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“David V” Procedure
Aortic Valve-Sparing Root Replacement




My Pioneering Experience with Robotic Surgery

«<—AESOP & ZEUS System (Computer Motion)
: 1994 - 2002

DaVinci System (/ntuitive Surgical)
o l 2003 - 2010

First U.S.
Beating-Heart
Robotic CABG

In 2000




Timeline of Surgical Robotics Development
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Welcome to the Medical Robotics and Computer Assisted
Surgery (MRCAS) Lab website!

https://projects.ig.harvard.edu/mrcaslab/home

MISSION: To Support, Improve, and Develop Human
Performance in Surgery.

The MRCAS Lab of Harvard Medical School and the VA Boston led by Dr. Marco
Zenati is known for its inter-disciplinary and multi-institutional research
occurring at the intersection of complex surgery, cognitive engineering, and

computer science.



https://projects.iq.harvard.edu/mrcaslab/home

BioRobotics




a2 United States Paten

Choset et al.

US 9,011,318 B2

(10) Patent N
45) Date of Patent:

Apr. 21, 2015

STEERABLE, FOLLOW THE LEADER
DEVICE

Inventors: Howard M. Choset, Pittsburgh, PA
S). Alon Wolf, Haifa (1L); Mar
Zenati. Pittsbu PA (US)

Assignee: Car ¢ Mellon University and
u sity of Pittsburg—Of the
Commonwealth System of Higher
Education, Pittsburg, PA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1425 d:

Appl. No 11/630,279

PCT Filed Jun. 24, 2005

(86) PCT No PCT/US2005/022442

§ 371 (e)(1)

(2).(4) Date Dec. 20, 2006
PCT Pub. No.: WO2006/083306
PCT Pub. Date: Aug. 10, 2006

Prior Publication Data

US 2000/0171151 Al Jul. 2, 2009

Related U.S. Application Data

(60) Provisional application No. 60/583,094, filed on Jun
S.2004.

(2006.01)
(2006.01)

(Continued)

e AGIB 1700006 (2013.01): A61B 1/0052
(2013.01); A6IB 1/005! 13.01); A61B

19722 (2013.01): A6IB 170016 (2013.01). A61B
197201 (2013.01); A6IB 2017/3445 (2013.01)
(58) Field of Classification Search
USK GO 114115, 139-142, 146, 149
See applicati

n file for complete search history
References Cited
U.S. PATENT DOCUMENTS

10/1¢ Sheld,
T

21972
(Continued)
FOREIGN PATENT DOCUMENTS

S6048294 A 31
03073920 A2 972003
(Continued)
OTHER PUBLICATIONS
N nt De: or Three-dimen:
Redundant Conference on R
tems, La 2003

(Continued)

Matthew | Kasztejna
rm — Fox Rothschild LLP

ABSTRACT

hly articulated robotic probe (HARP) is comprised of a
“hanism and a second me 1ism, one or bot
which can be steered in desired directions. Each mechar
can alternate between being rigid and limp. In limp mode the
mechanism is highly flexible. When one mec
the other is rigid. The limp mech: i

ey
inth ions. The device can “remember” its |
conf ) » anywhere in a body or other struc-
ne). When used in medical applications,

once the device arrives at a desired location, the inner core
mechanism can be removed and another functional device
such as a scalpel, clamp or other tool slid through the

orm. Because of the rules k

S Patent 9,011,318

STEERABLE, FOLLOW
THE LEADER
DEVICE

INVENTORS: Howie Choset,
Alon Wolf, Marco Zenati



Co-FOUNDER in 2005

®. Medrobotics

Expanding the reach of surgery ®



prototype belo

HOW THE HEARTLANDER ROBOT WORKS

1. Therobot is ‘ ' 2. Forceps are f \ 3. After the robot

Inserted through a used to place the N\ \ attaches itself, the

small incision below ' ) robot directly on A, | surgeon gui it over the
= sternum \ 557 | the heart 4/ | heartwithajo

FRONT SUCTION LINE POSITION SENSOR FRONT SUCTION CHAMEER
An external pump
FRONT BOOY ‘vlnl.'ltl»;'. suction

| Ny

N\~

REAR SUCTION DRIVE . ’gi

SUCTION LINE 300 HAMEBER WRE

The New York Times 2011



Cell Transplantation and Tissue Regeneration

Minimally lnyasiy icardi; lections Tsing a Novel

2006

Takeyoshi Ota, MD, PhD: Nicholas A. Patronik, PhD:; David Schwartzman, MD:
Cameron N. Riviere, PhD; Marco A. Zenati, MD

Ota...Zenati. Circulation 2008



Current Federal Funding - Zenati Lab

m * U.S. National Institutes of Health (NIH)/National Heart, Lung & Blood
Institute (NHLBI)

* RO1-HL126896 Title: “A Novel Cognition-based Guidance System to Improve Surgical
Safety”

* RO1-HL157457 Title: “A Robot-assisted Perfusion System to Improve Patient Safety in the
Cardiac Operating Room”

* U.S. National Science Foundation (NSF)/Division of Information and
N 3 ~ Intelligent Systems (IIS)
N e

=20 * Smart & Connected Health Award No. 2205000 (09/01/2022 —08/31/2026) Title: “An
Artificial Intelligence Coach for Enhancing Teamwork in the Cardiac Operating Room”
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The Problem



“Hospitals are not the safe places
we would like them to be.”

De Vries New Engl J Med 2010



Landmark 1999
U.S. Institute of Medicine Safety Report

U.S. alone/year:

* 98,000 deaths

|
el
caused by ' g
Preventable |
Adverse Events .IMMII

* 1 millioninjuries
e 1/150 patients die because
of injuries

Kohn LT et al. To Err is Human: Building a
Safer Health System. Washington, DC, U.S.
Institute of Medicine



Number of Deaths in the United States

Heart disease
Cancer

Medical Error
Respiratory disease
Accidents

Stroke

Alzheimer's Disease
Diabetes

Influenza & Pneumonia
Kidney disease
Suicide

614,348
a1 06595
I 251,454
147,101
136,053
133,103 s ~
93,541 Medical errors are the 3™
mas | drscemeotdenhi
55,227 \. J
48,146
42,773

0 100,000 200,000 300,000 400,000 500,000 600,000

Sources: CDC. National Center for Health Statistics. Number of deaths for leading causes of death, 2014,



Health Care vs. Other
High-Reliability Organizations

T High reliability and
Low reliability ar_ld poor Excellent safety profile
safety profile

Ground Airli
irlines
Health Care Transportation
Mountain ;
Climbi Chemical Nuclear Plants
Imbing Manufacturing
( 10 100 1,000 10,000 100,000 1,000,000 10,000,000
Number of encounters per one death




Surgery

* Among most challenging
activities performed by
humans

* Require years of training
and learning

— Cardiac Surgeon

* 4 years of Medical Schoal,
* 5years of General Surgery
— 1-2 year of research

e 2-3 years of Thoracic
Surgery

e >12 years of post-
college training!
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2/3 of Adverse Events in Hospitals are Surgical

m Surgery
» Medicine

50% of AEs are preventable!

Gawande AA 1999, Leape LL 1991



Locations of Adverse Events in Surgery

w
-
(o
5 >
1]
>
>
[\
.U’
lu(ﬂ
< c
s O
>~ =

4]
& 3
o O
I_l
£
©
-
Qo
-
-
0
=

Paticnt Rooms

3>

Calland 2002



Human Errors as Mental Workload Problems






THEQRETICAL POPULATION BIoLoGY 9, 129-136 (1976)

Optimal Foraging, the Marginal Value Theorem

Eric L. CHARNOVE

Center for Quan. Science in Forestry, Fisheries, and Wildlife,
University of Washington, Seattle, Washington 98195; and
Institute of Animal Resource Ecology UBC, Vancouver 8, Canada

Received December 26, 1974




ANIMAL FORAGING

Food

INFORMATION FORAGING

Information

A site containing one or more
potential sources of food

A website (or other source of
information)

Search for food

Search for information

The animal’'s assessment of how

likely it is that a given patch will

provide food

How promising a potential source
of information appears to the user

The totality of food types that an
animal may consider in order to
satisfy hunger

The totality of the information
sources that a user may consider
in order to satisfy an information
need




Limited Human Working-Memory Capacity

Information Load — Spare Capacity

* Surgeon working through a series of steps in a procedure uses working memory store to hold the information.
* Information contained in distractions/interruptions erases the material that the working memory store was holding



Cognitive Load and Performance in
Complex Socio-technical Systems

Good
A

Performance

Poor

/s

Low

<— Acceptable leve| —>

Cognitive Workload

Hebb-Yerkes-Dodson Law 1910



Surgical Team Routinely Cross
Mental “Red Zone”

: Hypothesized impact
on performance

50 — >50 >

Reckless!?

Frequency

60
Mental Demand

80

Yu...Hallbeck (Mayo) 2016



Linear Fit Model of
Cognitive Load and Medical Error

Errors per Provider per Application
7
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Pickering 2010



Prefrontal Regulation during Alert,
Non-stress Conditions

" atiention and thought

PONS EEE—




Amygdala Hijack during
Stress Conditions

Loss of
prefrontal
___regulation
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\. Emotional\
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Avoidance of PAIN as a driver of
human behavior...
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Cognitive Engineering

Cognitive Engineering to Improve Patient Safety
and Outcomes in Cardiothoracic Surgery

Marco A. Zenati, MD, *"* Lauren Kennedy-Metz, PhD,*"*$ and Roger D. Dias, MD, MBA, PhD*"

Task shedding™

Intelligent interruption system®”

Sterile cockpit™®

Short breaks'”

Team strengthening'”

Preincision time-out™’

Safety system for device interoperabilty™®
Workload-adaptive associate systems

Cognitive aids for high-risk/low-frequency situati ons”

Improved understanding of the cognitive basis
of preventable medical errors offers the oppor-
tunity to develop new sirategies to prevent and
mitigate human errors in cardiothoracic

Surgery.

2]

L]
L
L]
-
L]
L]
L
L
-

Zenati et al. Semin Thorac Cardiovasc Surg 2019



The Need



Diagnostic and judgment errors are the
second most common cause of preventable harm
incurred by surgical patients.

Healey et al 2002
Surgeons report that lapses in judgment are the
most common cause of their major errors.

Loftus et al. JAMA Surg 2019



Growth in medical facts affecting provider
decision vs. human cognitive capacity

1000 - -
Proteomics and other
_§ effector molecules
= 100
g Functional Genetics:
5 Gene expression profiles
w 10

Structural Genetics:
e.g. SNPs, haplotypes

C ity

1990 2000 2010 2020




Human Agents Managing
Increasingly Complex Work Systems




CDSS - Computerized Decision Support Systems

e Support e On top of e Concern for e Underlying
processing of EHR, mostly variable knowledge
large volumes for clinical impact engines need
of prescribing and alert to be
information and fatigue maintained as
facilitating medication they can
effective management quickly
decision- become out

making of date
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openEHR Data Repository

THINK!EHR Piatform
OBSERVATION.respiration.vl
OBSERVATION.body_temperature.v2
OBSERVATION.pulse.vl
OBSERVATION.laboratory_test_result.vO
OBSERVATION.ventilator_vital_signs.vl
CLUSTER.symptom_sign.vl
CLUSTER.specimen.vl

CLUSTER.ventilator_settings.vl

CLUSTER.device.vl

EVALUATION.problem diagnosis.vl

COMPOSITION.report-result.vl

WOrTrre0e 06

R

i

Local Infrastructure & Source Systems

| | e lifm Ilf‘ﬂDDJII SAD II Fal~d 7 | I

API

Clinical Decision Support System

Retrieved
by

AQL I
< —

Knowledge Base

Working Memory

(Facts)

Rule Base

|

B |

Inference Engine

Drools

Retrieved
by

AQL

Graphical User Interface

Explanation facility

Visualization

Dialogue component

Respiratory Rate & Mechanical Ventilation

R




“Static”* CDSS

v Blood Glucose Management

e osometontio AN/ v’ Blood Transfusion Management
i v Physiologic Deterioration Prevention
v Pressure Ulcer Prevention
Review : v" AKI Prevention
Effects of computerized decision support system v VTE Prophylaxis

implementations on patient outcomes in inpatient care:
a systematic review

nedical Effect Score

Julian Varghese,' Maren Kleine,? Sophia Isabella Gessner," Sarah
Martin Dugas'
T EEE—————

*CDSS output does not change with use

JAMIA 2018



Performance

Early efforts

Current state

Al with subhuman
performance is
occasionally used in
commercial expert
systems with varying
degrees of utility

Narrow task-specific Al has
started to match and, in
some instances, exceed
human performance in tasks
including conversational
speech recognition, driving
vehicles, playing Go and
classifying skin cancer

Ceneral Al exceeds human
performance and reasoning
in complex tasks, including
writing best-selling novels
and performing surgery.
Human intelligence
improves as we learn

from Al

Hosny et al. Nature Rev Cancer 2018



Challenges in Surgical Decision Making

v'Complexity

v'Values and Emotions

v'Time Constraints and Uncertainty
v'Heuristics and bias

source of Bias

Examples

Framing effect

Owverconfidence bias

Commisshon Dlas

ARChoring bias

ReCall bias

Confirmation bias

A cliniCian presents a clinical scenario to 3 surgean
in different context than the surgeon would have
percedved during an Independent assesument

A surgeon falsely perceives that weaknesses and
failures disproportionately affect their peers

A surgecn tends toward action when inaCtion may
b preferable, especially in the context of
averconfidence bias

Patients are Informed of expected outComes using
data from »oregate patient populaticns without
adjusting for their personalized nisk profile

Recent experiences with a cerain patient
population or aperation disproportionately
affect surgical deision-making relative to
ramote expersnces

Qutiomes Jre prddicbid using persond bellefs
rather than evidence-based guidelines




The Solution
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Rationale for Autonomous Vehicles (AV)

* SAY GOODBYE T0 DISTRACTIONS

IN A SURVEY BY THE NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, PARTICIPANTS
WERE ASKED WHAT DRIVING DISTRACTIONS THEY FREQUENTLY ENGAGED IN.

P e e 80% 1 L“% O L NN

Talking to other passengers Using portable music player

I U B T S S F—

Adjusting the car radio Making/accepting phane calls Interacting with children in the back seat
usmmmmvmsmcmn mzoog THERE WERE OVER DISTRACTED DRIVING COSTS SOCIETY ABOUT
(/ OF POLICE REPORTED DL |

Chot Mo 5000KILLED | $230 BILLION/YEAF
[</ || AL 450,000 INJUREL

'|/||n TALITIES OE TODSIRATED DRVG ©)

)

“‘

£
AL)

.

Fa .. —-.

WITH A DRIVERLESS CAR, ALL OF THESE DISTRACTIONS WOULD BE ERASED FROM THE

EQUATION, RESULTING IN FEWER CAR ACCIDENTS, INJURIES, AND DEATHS.



PERCEPTIONS OF GENERAL SURGEONS ON Al

1 70/ Which application of Al in the Who should be liable if an Al
- OR has the greatest potential? tool is used?

| have made
clinical use of Al 839% The Surgeon

o Image A
T 58 /° processing
Would you have a fully autonomous

27% gallbladder surgery in the future?

% ?24% Guidance E-:i. 659%  Yes

~
-

| follow Al
developments

%

Survey sent to Dutch Association of Surgeons. 313 surgeons responded (17%). % rounded to nearest whole number.

@p,ﬂm
3 -
m Artificial Intelligence Surgery Voskens et al., Jan 2022 gb‘tﬁ'ﬂ*



Al/ML-flown uncrewed aircraft solving a tactically relevant
“challenge problem” during airborne operations

Manned Unmanned

’—ém»

Artificial Intelligence agents (algorithms)
controlling a XQ-58A Valkyrie uncrewed aircraft.
USAF July 2023




Advances in both data capture in the
operating room and explainable artificial
intelligence (XAl) techniques to process
these data open the way for

REAL-TIME CLINICAL DECISION SUPPORT
*Al (Adaptive)-CDSS*

that can help surgical teams anticipate,
understand, and prevent intraoperative
events.



WINDOW of OPPORTUNITY
V %



Surgical “Hybrid Decision Support System”

Al models, fed with live-streaming data, would:

(a) obviate human surgical decision-making
weaknesses and

(b) should be integrated with human intuition to
augment surgical decision-making



OBGYN/Labor&Delivery Unit
Resource Nurse solving an NP-hard problem

8 small LCDs with 20 1 manual dashboard

4 large LCDs with bed
management info (22 LDR, 5 OR) fetal heart tracings 15Cx30R

(8]

T - b
: 1 charge nurse, 2 monitor screens with staffing info on 28 direct reports

e Stochasticity of patient progression

* Upper and lower-bound temporal constraints Gombolay et al. 2016
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The International Journal of
- . Robotics Research

e coordination of 2018, Vol. 37(10) 13001316
) The Author(s) 2018
Article reuse guidelines:
sagepub.com/journals-permissions
DOL 10.1177/0278364918778344
journals.sagepub.com/home/1jr

®SAGE

g', Bradlev Haves', Nicole Seo',
a Yu', Neel Shah’, Toni Golen? and Julie Shah'

Gombolay et al. Int J Robotics Research 2018



Apprenticeship Scheduling: Learning to Schedule from Human Experts

Matthew Gombolay Reed Jensen, Jessica Stigile, Julie Shah
Massachusetts Institute of Technology & Sung-Hyun Son Massachusetts Institute of Technology
77 Massachusetts Avenue MIT Lincoln Laboratory 77 Massachusetts Avenue
Cambridge, Massachusetts 02139 244 Wood Street Cambridge, Massachusetts 02139
gombolay ail.mit.edu Lexington, MA 02420 julie_a_shah@csail.mit.edu
{rjensen,jessica.stigile,sson } @1l.mit.edu

Apprenticeship Scheduler Oft-bosrd Decoy

Decision Maker 1)

Pairwise Comparison: Learn Rule to Predict Action
Actions Taken vs. Not Taken using Counterfactual Reasoning

At time t, User Took Action i Labeled Learned Decision Tree
Training Data

Training
Data

1800

1200}
Actual or Simulated Decision Rule ""'
. Negative N L
Environment Examples  Examples i=argmax ) freel%-3)

b J
ie{1.L.n} i

GO0

0

Computation Time (s)

13 20
Number of Tasks

Learn from imperfect human demonstration on simpler problems to
optimally solve more complex problems 10x faster




Learning from Human Demonstrations

Classic Learning Paradigm
* Domain experts & engineers work together

 Transfer domain knowledge, then design algorithm

Challenge: domain expertise is hard to verbalize.

Challenge: not enough engineers to code every use case.

Reinforcement Learning (RL)
- Domain experts and engineers design cost function
« Allow the Al/robot to learn by itself

Challenge: cost function is HIGHLY non-trivial to design

Challenge: RLs learning from trial&error in healthcare??

Learning to Walk

via Deep Reinforcement Learning

Submission ID: 60

Figure Credit: https://www.zdnet.com/article/yes-robots-have-taken-over-so-why-dont-we-care/, Haarnoja, T., Ha, S., Zhou, 59
A., Tan, J., Tucker, G., & Levine, S. (2018). Learning to walk via deep reinforcement learning. arXiv preprint arXiv:1812.11103.


https://www.zdnet.com/article/yes-robots-have-taken-over-so-why-dont-we-care/

Learning from Human Demonstrations

-

|

1) Giving robots

Learning from Demonstration (LfD) insights into human

decision-making

« Allow domain experts to directly program Al/robots
through demonstrations

* Intuitive, scalable, and personalizable

Solution: Domain knowledge is easier to demonstrate!

Three forms for LfD
*  Mimicry — Supervised Learning
* Emulation — Goal inference and planning

* Imitation learning - Inverse Reinforcement Learning




Human demonstrations are not ideal!
Variable, suboptimal demonstrations

« Humans often adopt heuristics due to limited cognitive abilities (Herb Simon 1972)

. With thanks for your steady eye and hand, and warm regards,
* Varial ; sihis

(fm'diull.\' yours,

il ad i

Herbert A. Stimon

* Subop=

61



Learning from Variable Demonstrations

* Ignore the variability -> learned model may not perform well, lose personalization

X Convergence Pol icy T X Personalization

ng world

Western & Southern @
Financiad@Group®

T4 X Ambiguity X Efficiency

* Learn a policy for each demonstration separately -> a single demo conveys an ambiguous
intention and learning from scratch is not efficient.

62



Learning from Variable Demonstrations
* Multi-Strategy Reward Distillation (MSRD)

* Ry: shared task reward

* R;: specific strategy i's reward

L. Chen, R. Paleja, M. Ghuy, and M. Gombolay,
“Joint goal and strateqgy inference across
heterogeneous demonstrators via reward network
distillation,” in Proceedings of International
Conference on Human-Robot Interaction (HRI), 2020

63



Al Coach in OBGYN
La bo r& De I ive ry min fr ({:_4:;, A {FG:!—}‘ {rﬁif}' R })
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* Formulation of the “Resource Nurse Decision S (G, < Cuva € AV
Making Problem”

* Role of the Resource Nurse SR 20 (1 ) v €7
* Learning from Resource Nurse 3 Ey<1vreRw

ub i > f i —s; > :'I}J_;.VT;j ET
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Gombolay et al. 2016



Robotic Coordination of Patient Care in OBGYN

///”/7” =
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- » 3
. -
-
) A
-

Resource Nurse: What is a good decision?

Courtesy of Julie Shah MIT



Nao: A humanoid robot Digital Human Avatars

https://www.youtube.com/shorts/rRgPOx1aldQ

Created by Aldebaran Robotics in France (2008)
https://www.softbankrobotics.com/us/NAO


https://www.youtube.com/shorts/rRgPOx1aJdQ

Project SOAR: Simulation of Operating Room Non-Technical Skills
in Immersive Virtual Environments (AHRQ R18 Zenati/Ebnali 2023)

——— ———

W, .,
U 2]

&

]

v
Immersive HP Reverb G2 Omnicept Headset Multi-Users Real Time Simulation

& . @

5‘*' ~J j .
e T Anesthesiologist Anesthesiologist
‘ Came i -

Surgeon‘.aimn assistant

(‘)R 3D Models

OR/VR Team:
Mix of Human Avatars + Digital Avatar Agent

Training/ Uls Team Avatars




Teamwork in the

Cardiac Operating Room
Status Quo and Opportunities for Al




Enhancing Teamwork in the Cardiac OR
Opportunities for Artificial Intelligence

We envision an Al-enabled assistant (called Al Coach) that can provide automated real-time
assessment of surgical teamwork to enhance teamwork and mitigate preventable errors.

 Observe team behavior using multi-modal sensors.

* Model teamwork using the recorded data.

* Assess teamwork using the team model and data.

 Generate interventions to improve teamwork.

References:

Seo, S., Kennedy-Metz, L. R, Zenati, M. A, Shah, J. A, Dias, R. D., & Unhelkar, V. V. (2021, May).
Towards an Al coach to infer team mental model alignment in healthcare.
In 2021 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA) (pp. 39-44).

Predict misalignment in team members’ mental
models from sensed multi-modal data.



Generative Models
of Surgical Teamwork

Multi-Modal Team Imitation Learning




Research Problem
Learning Generative Models of Surgical Team Behavior

Past:
Observations of
Team Behavior

Learning
Algorithm

Future: Prediction of

- | A7 e ‘\ .7{:
A Team Behavior




Multi-Modal Measurements of Teamwork
Desiderata: Informative, Unintrusive, Privacy Preserving

References:

1. Kennedy-Metz, L. R, Dias, R. D., Srey, R, Rance, G. C,, Furlanello, C., & Zenati, M. A. (2020).
Sensors for continuous monitoring of surgeon’s cognitive workload in the cardiac operating room. Sensors, 20(22), 6616.

2. Dias, R. D, Kennedy-Metz, L. R,, Yule, S. J., Gombolay, M., & Zenati, M. A. (2022, June).
Assessing Team Situational Awareness in the Operating Room via Computer Vision.
In 2022 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA) (pp. 94-96). IEEE.



Representing Team Behavior
Model: Multi-agent Markov Decision Processes

e

Surgical Team

Team’'s behavior summarized by their policy,
1t(als,x)

S

Actor’s Decision factors (states) that
actions or decisions influence the actor’s behavior



Multi-Agent Imitation Learning
Prior Art: Learning Generative Models of Team Behavior

Observable component
of team behavior N
(s, ay, aRr) - sequences

ﬁH(aHlsi XH)

ﬁR(aR|S, XR)

input layer . .
Assumptions regarding team’s n hidden layer 1 hidden layer 2 MUIU—Ager\t. PO||Cy
mental states Multi-Agent T descgb;}ng_
(X, XR) Imitation Learning cam Sehavior

Algorithm

Prior work either does not model team members’ mental states
or assume the team members are always in agreement (x, = xg).



Solution: Bayesian Team Imitation Learning
Key Insights

Pr(@|s,x,a) « Pr(s,x,al|f8) Pr(6)

Objective
J(6)
d samples Policy Parameter 6
Insight #1: Insight #2:
Add bias through priors Enable semi-supervised learning

and probabilistic structure via Bayesian techniques



Solution: Bayesian Team Imitation Learning
Key Components

Algorithm 1 Bayesian Team Imitation Learner (BTIL)
lnplIt: T1:ds X1:1 .
Parameters: v™, u’= N, T,

[u—

Initialize w?, w!* fori=1:n

Compute the policy posterior g(7) ~ Dir(wT)
return arg max, ¢(m)

2: Initialize posterior of all unlabeled states ¢({z%/},,~/)
3: while £(q) converges do

4:  Update the variational parameters wT, , wj?,

5. forall 7,,, do

6: Compute forward F' and backward B messages

7: :lj[;‘date posterior of all unlabeled states q({z%"},,/)
8: end for

9: end while

0:

l:

—

Our solution includes a generative model of team behavior (left) and
a Bayesian multi-agent learning algorithm (right) to learn team policies
from semi-supervised and suboptimal demonstrations.



Experimental Results

Decoding Error
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BTIL can effectively utilize available
partial annotation of latent features to learn policies.

Results on human subject data collected in silico on a benchmark teaming task. More details available in:

1. Seo, S, Kennedy-Metz, L. R, Zenati, M. A, Shah, J. A, Dias, R. D., & Unhelkar, V. V. (2021, May). Towards an Al coach to infer team mental model alignment in healthcare.
In 2021 IEEE Conference on Cognitive and Computational Aspects of Situation Management(CogSIMA) (pp. 39-44).

2. Seo.S.. & Unhelkar. V. V. Semi-Supervised Imitation Learnina of Team Policies from Suboptimal Demonstrations. In 2022 International Joint Conference on Artificial Intelligence (L/CAI).



Towards Automated Team

Assessment and Training
On-going Research and Next Steps




Al Coach for the Cardiac OR

Towards Automated Assessment of Surgical Teamwork

Surgical Team in the OR

Al Coach

Sensors

v

User Interface

o

Al to model, predict,
and improve teamwork




Automated Team Assessments

Teamwork

Inference

Algorithm

Automated
Assessment I |




Automated Team Interventions

Teamwork
Actionable
Feedback

Feedback

Algorithm




Collaborative Multidisciplinary Science

Supported by NSF/NIH Smart Health and Biomedical Research in the Era of Artificial
Intelligence and Advanced Data Science Program’s Award #2205454.

This work is a collaborative effort involving researchers from Harvard, Rice University, Brigham
and Women'’s Hospital, Massachusetts Institute of Technology.

Eduardo Salas
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Models which simply
provide predictions without
explanation, are difficult for

physicians to trust and
provide little insight into
how they should respond.
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xplainable machine-learning predictions for
the prevention of hypoxaemia during surgery

Scott M. Lundberg®?, Bala Nair?*4, MonicaS. Vavilala?*4, MayumiHoribe®, Michael J. Eisses?®,
Trevor Adams?¢, DavidE. Liston?¢, Daniel King-WaiLow?¢, Shu-Fang Newman?3, Jerry Kim%¢ and
Su-InLee ®™

NATURE BIOMEDICAL ENGINEERING | VOL 2 | OCTOBER 2018 | 749-760 | www.nature.com/natbiomedeng



Prescience: ensemble-based-model ML
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Need for Higher Standards in Artificial
Intelligence-enabled Decision Support in Surgery

* Al models should incorporate explainability mechanisms to convey the relative importance of
input features in determining outputs.

* Aclinical implementation framework should be presented in developmental work and tested in
subsequent work

* Model Erecision (e.g., area under the precision-recall curve, positive predictive value, or F1 score)
should be reported.

e Confidence intervals should be reported for all performance metrics.

* Model performance across vulnerable populations (e.g., by race, sex, age, socioeconomic
indicators) should be reported.

 Artificial intelligence-enabled decision support should include patient-centered outcomes.

* Small sample sizes (less than 1,000-2,000 per class) should be accompanied by model learning
curves illustrating change in predictive performance as the sample size increases.

* Internal validation alone is inadequate unless the modeling approach or application is novel.

Loftus T et al. Annals of Surgery 2023



Measures for Evaluating Human-Al Teams

Team Performance

*  Quality
* Decision Making
* Performance Outcomes
* Time on Task
* Operations Under Failure or
Unanticipated Conditions
* Recovery Time
* Recovery Quality
* Resilience
* Bias Propagation
* Adaptability
* Safety

Team Sustainability

* Human
* Job Satisfaction
» Skill Retention
* System

* Maintainability & Auditability

* Vulnerability
* Suitability

Team Knowledge

* Situation Awareness (Models)

* Team
* Shared
* Mental Models
* Team
* Shared

* Knowledge
*  Teamwork
* Taskwork

Team Processes

* Team Situation Awareness Processes

* Team Trust
* Team Distrust
* Teamwork Quality
* Cohesion
* Coordination
* Cooperation
* Communications
* Behaviors

Team Efficiency

* Training Time
* Team Organization Optimality

Effectiveness of Resource Utilization
Mutual Performance Monitoring
Coordination Efficiency

Flexibility

Time to Resolve Uncertainty (TRU)

* Workload
* System

Usability
Understandability
Predictability
Controllability
Trustworthiness
Responsivity

Reliability

Robustness

Over-Promise Rate (OPR)
Bias



The Risks



Should Humans Team
with Al?



Machines as Teammates
WEL




“We shape our tools,
and thereafter, our
tools shape us”.

Marshall McLuhan
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Elevate cancer care
with the Watson
Oncology Suite

IBM's Watson recommended 'unsate
and incorrect' treatments for cancer
patients, investigation reveals

10:00 AM - July 27, 2018
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IBM Watson at MD Anderson Cancer Center



Al vulnerability to adversarial
attacks

Original Image Adversarial “Noise” Adversarial Example

Drabetic
Retinopathy
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Want Less-Biased
Decisions? Use
Algorithms.

by Alex P. Miller
JULY 26, 2018

Human Beings Are Remarkably Bad Decision Makers
A not-so-hidden secret behind the algorithms mentioned above is that they actually are biased. But
the humans they are replacing are significantly more biased. After all, where do institutional biases

come from if not the humans who have traditionally been in charge?



Risk of “Skill rot”



The Costs



Consumption CO,e (lbs)

Air travel, 1 passenger, NY QSF 1,984

Human life, avg, 1 year 11,023

American life, avg, 1 year 36,156

Car, avgincl. fuel, 1 lifetime 126,000

Training one model (GPU) NLP pipeline (parsing, SRL) 39 w/
tuning & experimentation 78,468

Transformer (big) 192 w/ neural architecture search 626,155



Conclusion



Roadmap for Developing Effective
Machine Learning Systems in Healthcare

Fom B |
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« collaborators? = dala provenance?
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= definition of success? = ground truth?
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and thoughtiul 4 - + gthicist
reporting . = hias correction?
" Lse! g adl £ 5
sttt R (@) Desloving rosponsiy
«failure modes? | gdlIgg *+ prospective parformancae?
p +Clinical tnal?
Making it 1o markat = safety monitoning?
= medical devica? 0 :_{!
« model updates? ﬁ‘ .f' ! 'u

Wiens et al. Nat Med 2019



Interdisciplinary Teams of Stakeholders

Stakeholder categories Examples

Enowledge experts » Clinical experts
# ML researchers

« Health information and technology experts
» Implementation experts

Decision-makers « Hospital administrators
» [nstitutional leadership
» Regulatory agencies
« State and federal government

» Murses
o Physicians

» Laboratory technicians
e Patlents
« Friends and family (framily)




Harvard
Business _ _ ,
Review Business And Society | AI Won’t Replace Humans — But Hu

Business And Society

Al Won’t Replace Humans
— But Humans With Al Will
Replace Humans Without
Al

August 04, 2023




“Humans in the Loop” for Everything

* Trainers: Teaching Al systems how to perform will require deliberate effort to evaluate and
stress test them. Al systems can automate tasks and find patterns in data, but still require humans
to provide meaning, purpose, and direction.

« Explainers: Advancing Al algorithms often have a "black box"” nature, making suggestions with-

out clear explanations, requiring humans versed in both the technical and application domains to
explain how such algorithms can be trusted to drive practical decisions.

» Sustainers: The intelligence needs of human endeavors will continually evolve, preventing the
advent of “completed” Al systems. Humans must continue to maintain, interpret, and monitor the
behavior and unintended consequences of Al systems.

We may need 20 people to do the job that was previously done by 10...



Al is a strategic technology that offers many
benefits for society as a whole

provided that it is

human-centric, ethical, sustainable and respects
fundamental rights and values.



Thank you!

Marco_Zenati@hms.harvard.edu
@MarcoZenatiMD






Labeles Indicating Presence of Surgical
Instruments in Images




Barriers to Digital Surgery

Development

Deployment

Monitoring

Lack of digitisation in hospitals

Legacy Hospital IT systems unfit for purpose
Insufficient data availability

Lack of shared ontology for annotation

Lack of data registry and platform standards
Lack of standards in data formatting methods
Lack of data quality standards

Insufficient expertise in surgical Al

Poor interoperability between Al systems and
embedded technology in the Operating room
Difficulties in sharing data between multiple centres

Costs of setting up infrastructure
Hindering of process due to bureaucratic
processes

Challenges in getting contractual
relationships established

Reimbursement or business model not
clearly defined

Institutional aversion to sharing patient data
Inability to demonstrate safety or clinical
benefit to stakeholders

Difficulties of integrating Al systems with
existing IT infrastructure

Variation in hospital IT systems
Regulatory requirements are unclear at
presant

Lack of framework for consenting and
obtaining data

Clarity on responsibility for data monitoring
Lack of resource and personnel dedicated
to task

Costs associated with monitoring

Lack of standardised outcome measures for
monitoring

Difficulties in quantifying improvement
Lack of prioritisation given to monitoring at
present

Divide between those monitoring and
developing surgical Al systems







Improvement
Digital Surgery

Laparoscopic Surgery

Open Surgery \

Robotic Surgery is here:
A bridge between Lap

and Digital Surgery
I Time



DARPA/DOD’s MEDFAST Surgical Unit
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Surgical Robots Market
Revenue in USD billion, Global, 2019-2026

2019 2020 2021 2022 2023 2024 2025 2026



“Million Dollar Needle Holder”

Jim Moser, Robotic Surgeon @BIDMC



From Tools to Teammates

Full
autonomy

Supervised
autonomy

High-level
autonomy

Task-level
autonomy

Robot
assistance

No autonomy

Human
function - L ——. &/ | No fallback option

Human surgeo
only approves
the procedure

Surgeon involved
The controls shall with high Situation
not be released at Awareness

any time while the
system operates
autonomously

Human surgeon
directly and
continuously
controls the
Human surgeon robotic system
is in charge for
all actions

Capability to
Generate e Select e Execute e Monitor

T. Haidegger IEEE Transactions in Medical Robotics and Bionics 2019



Science Supervised autonomous robotic soft tissue surgery
Translational Azad Shademan, Kvan S. Decker, Justin D. Opfermann. Simon

Medicine Leonard, Axel Krieger and Peter C. W. Kim (May 4, 2016)
AVAAAS Science Transiational Medicine 8 (337), 337ra64. [dor:

10.1126/scitranslmed.aad9398]

Editor's Summary

Hands-free

[ he oper: ltm r room may someday be run by robots, with surgeons overseemng thewr moves
Shademan er al. designed a "Smart Tissue Autonomous Robot." or STAR. which consists of tm)]s for
suturing as well as fluorescent and 3D imaging, force sensing, and submillimeter positioning. With all
of these components, the authors were able to use STAR for soft tissue surgery—a difficult task for a
robot given tissue deformity and mobility. Surgeons tested STAR against manual surgery. laparoscopy,

and robot-assisted surgery for porcine intestinal anastomosis, and found that the supervised autonomous
surgery offered by the STAR system was superior.

A Force sensor

Surgeon
interface

Surgica
tool

Shademan et al. Science Translational Medicine May 2016




J
q’;’ ';...' EP procedures

@) Capsule robots

HIGH AUTONOMY f ) Bionic implants

The robot can make deasions but needs to be under

the supenasion of a qualified user, )
Micro-nano robots

CONDITIONAL AUTONOMY .' Orthopedic robots
The system can generate task strategies but relies on . ' ]
the user 1o seect and approve a stratecy E
= Radiotherapy robots
TASK AUTONOMY / / = Rehabilitation robots
okl performs certain operator-initiated tasks f
- P e S T [y i ] - .
BUONCMOUaly | Wearable assistive robots
f
ROBOT ASSISTANCE f-"' {‘ f: Laparoscopic surgical robots
User maintains continuous control while / /
the robot provides some assistance / / ,'i_;] Electrode placement for DBS
/
f ."I
| ' Heart valve repair & replacement
NO AUTONOMY ) / / ” v P ep
The system is controlled manually <l> q / [ .
to follow the user's commands. ¢ | / ‘:,:’ Emergency mechanical thrombectomy

Dupont et al, Sci Robot. 6, eabig8017 (2021) 10 Novernber 2021




The Automation Conundrum

The more automation is added to a
system, and the more reliable and robust

that automation is...

...the less likely that human operators
overseeing the automation will be aware
of critical information and ...

...able to take over manual control when
nheeded.

Endsley 2017



Advanced Robot-Assisted Surgery Digital Surgery

Visualization
& Imaging Effort to Data to inform
_ ‘ Advanced Proficiency decisions
Dissect in Instruments
- tight spaces
Precision & Workflow Conneclivity
Control Flexibility across systems
Marketability Footprint
Ergonomics Investment/
Value

Met

Needs Continuum

Unmet



Ethical Dilemmas of Al for Health Care
“Al Bioethics”

* How do algorithms arrive at a particular conclusion?

* Risk of exacerbation of human bias and discrimination

* Tension between profit and delivery of health in U.S.

* Alasa “Luxury item” (ie, does nothing to democratize expertise)
* Patients give up a lot of privacy

* How Al will interact with health insurance reimbursement? (eg, provider may not be allowed to use discretional power if insurance only reimburses
what Al recommends)

* Excessive control of provider decision and workflows (eg, CDSS)
* Good to reduce errors, bad if only geared to increase profit or finessing evaluation metrics

* Can providers challenge algorithmic recommendations? (already an issue in non-healthcare contexts — higher standard)

* Current medical education system not preparing to practice in an Al-augmented environment (eg, need to be critical users and need to learn data
science = Human-capital pipeline)

* Need expertise in “ML for Oncology” (vs ML and oncology)
* Black box algorithms, transparency, explainable Al (clinicians order MRI but don’t know exactly how an MRI scanner works, but someone does)
*  We don’t know how many therapies work in medicine but we can demonstrate that it reliably produces the desired effect

* Important that Al works vs how it works



Projected physician shortfall into 2030
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Comprehensive
Network of

Experts

Data privacy
experts

Software
engineering
Natural language
processing

Machine learning

Physicians and
healthcare
experts

Computer
scientists

Medical image
analysis




We Need More Collaborative
Sciencel

* Inside Medicine/Multidisciplinary
* Cardiology, anesthesia, vascular surgery, etc

* Outside Medicine/Interdisciplinary

* Computer science, robotics, mechanical engineering, human factors,
computer modeling, simulation science, statistics, computer vision, Al/ML,
etc




Future Research Goals for Digital

Surgery

Technical Clinical Organisational

Standardisation of surgical data science Define most suitable use cases/applications  Demonstrate impact of surgical Al systems
platforms for data sharing and annotation for surgical Al Improve public trust and education in Al

Shared ontology for data annotation Develop core outcomes, reporting and Legal framework for introduction and monitoring of
Improving explainability of Al algorithms measurement sets relevant to Al in surgery Al surgical systems

Dealing with unlabelled or weakly Develop framework for introduction and Encourage interdisciplinary education

labelled data evaluation of Al in surgery Organisation of task force involving all relevant
Identifying inequalities in underlying datasets Determine trial methodology for assessment stakeholders to define best practices for surgical Al
Effective data collection systems of surgical Al Define impact of surgical Al systems on litigation
Uptake of common communication standard Standardisation of processes and liability

for surgical data Encourage surgeons to share data Establish a model business plan with industry
Generation of open source datasets

Interoperability between different devices and

systems




Cognitive

Automation

* Software bringing intelligence to
information-intensive processes.

* Commonly associated with Robotic Process
Automation (RPA) as the conjunction
between Artificial Intelligence (Al) and
Cognitive Computing



SCIENCE ROBOTICS | REVIEW

Non-laparoscopic robots Non-laparoscopic robots
(Electrode implant) e (Eye surgery)

Continuum robots 9§ o) Soft robots
(Bronchoscopy) 4 (Cardiac assist)

Soft robots y Assistive wearable robots

(Rehabilitation) N (Prosthetic arm)

Robotic laparoscopy sy Capsule robots
(Prostate) fi (Gastroscopy)

Magnetic actuation ot Therapeutic rehabilitation robots
(Micro/nanoscale) “ss'sf',‘,’;:tf,:h’.’cb':g?““ (Gait training)







“Spaghetti Syndrome”

_eatchpole 2042
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SURGICAL DATA SCIENCE

Maier-Hein L et al. (2017) Surgical Data Science: Enabling Next-Generation Surgery.



MRCAS Lab

* To quantify, predict, and support mental states of surgical team
members through novel, multi-modal, and unobtrusive methods in
the OR

* Measuring and assessing behaviors
* Physiological data capture
* Machine learning and computer vision approaches

* We envision a context-aware cognitive aid that can function to
support OR personnel when cognitive demands become excessive



Measuring and
assessing behaviors

N

Category Elements

Situation Awareness e Gathering information

e Understanding information

* Projecting and anticipating future state

Decision Making e Considering options
* Selecting and communicating option

 Implementing and reviewing decisions

Communication and Teamwork — ] e Exchanging information
e Establishing a shared understanding
* Co-ordinating team activities

Leadership — e Setting and maintaining standards
e Supporting others
e Coping with pressure

Flin R et al. (2012) The Non-Technical Skills for Surgeons (NOTSS) System Handbook v1.2: Structuring observation,
rating and feedback of surgeons’ behaviours in the operating theatre, Aberdeen University.







Machine learning and computer vision
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PROTAMINE
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Prior to the error (labeled “Protamine”), isolated cognitive overload
state can be observed (HRV LF/HF ratio of 37; normal is <2.5) for the

anesthesiologist. Following the error, the cognitive workload of all 3
team members Fises Synehtanously

Zenati M et al. (2019) First Reported Use of Team Cognitive Workload for Root Cause Analysis in Cardiac Surgery. Seminars in Thoracic and
Cardiovascular Surgery



Periods of mirrored physiological levels across team members
occur most commonly during highly stages

Providers' Deviations from their Average Cognitive Workload
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Kennedy-Metz LR et al. (2020) Analysis of Mirrored Psychophysiological Change of Cardiac Surgery Team Members During Open Surgery.
Journal of Surgical Education.



Consecutive peaks in physiological levels occur during
deviations from standard care, most often reflecting

LF/HF Ratio Deviations from Average Values
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Kennedy-Metz LR et al. (2021) Cognitive implications of high teaching burden in academic cardiac surgery. Abstract for podium presentation.
Academic Surgical Conference



ical levels are more strongly associated
and low team physiological levels
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Kennedy-Metz LR et al. (2021) Prevalence of Surgical Flow Disruptions Across Intra-operative High- and Low-Workload Phases in Cardiac
Surgery. Conference proceedings of the International Symposium on Human Factors and Ergonomics in Health Care.



Lowest noise levels and
surgeon’s highest heart
rate occur during
anastomosis/aortotomy

Heart Rate (bpm)
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Kennedy-Metz LR et al. (2022) Systematic assessment of perioperative indicators affecting team performance and noise levels in cardiac surgery.
Abstract for poster presentation. American Association for Thoracic Surgery.
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Team Motion Entropy - H (bits)
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Poor Good
Surgical Team Non-Technical Skills

Merging non-technical skills
assessment and computer
vision approaches, recent work

has demonstrated that teams
with

exhibited less motion
entropy while separating the
patient from bypass, suggesting
greater coordination

Ebnali M et al. (2022) Using computer vision for automated assessment of non-technical skills during a critical phase of cardiac surgery.

Abstract under review, 18th Annual Academic Surgical Congress.
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3 |Stage Step N\ Step Name Sub-step Number |Sub-step Name Sub-step order Agent Resources Resources/Inputs
79 |Pre-oy 4| Perform Pre-incision Time Out Sequential
80 4.1|Confirm all team members have introduced themselves by name and role Anesthesiologist, Surgeon, Nurse, Perfusionist
81 4.2|Discuss crisis checklists Sequential
82 4.2.1 Confirm all team members know how to locate/access crisis checklists Anesthesiclogist, Surgecon, Nurse, Perfusionist
83 4.2.2 Identify designated reader of crisis checklists Anesthesiologist, Surgeon, Nurse, Perfusionist
84 4.3 IF (TEE probe in place) THEN Perform TEE Anesthesiologist ITEE probe, TEE scanner
85 4.4 Verbally confirm updated procedure Anesthesiologist, Surgeon, Nurse, Perfusionist
86 4.5 Perform review of anticipated critical events In Any Order
87 4.5.1 Perform surgeon team review of anticipated critical events Surgeon
88 4.5.2 Perform anesthesiologist team review of anticipated critical events Anesthesiologist
89 4.5.3 Perform nursing team review of anticipated critical events Nurse
90 4.6 Administer prophylactic antibiotics Anesthesiologist Patient
91
92 |IntraC 5|Perform Sternotomy Sequential
93 5.1 Make First Skin Incision Surgeon Patient, Scalpel, Electrocz
o4 5.2|Divide Sternum Surgeon Patient, Sternal saw
95
96 |IntraC 6|Perform Vessel Harvesting Sequential
97 6.1 Lift Sternum Surgeon Patient
98 6.2 Turn on CO2 monitor on cardiac tower Nurse Cardiac tower
99 6.3 Harvest conduits In Any Order
100 6.3.1 Harvest LIMA, RIMA, or both Surgeon Patient
101 6.3.2 Prepare for and then harvest saphenous vein or radial artery Sequential Patient
102 6.3.2.1 IF (Endoscopic vein harvest AND (Decision to administer low dose heparin = YES)) THEN Administer low dose heparin Anesthesiclogist Endoscopic or open vein
103 6.3.2.2 Harvest saphenous vein or radial artery Surgeon Patient
104
105|IntraC 7|Perform Heparinization Sequential
106 7.1/ IF (HDR Recommended Heparin Dose > 400 u/kg) THEN Report Suspicion of Heparin Resistance Perfusionist HDR Recommended Hepz
107 7.2/ Administer HDR Recommended Heparin Then Verify ACT Sequential
108 7.2.1 Administer Heparin Anesthesiologist HDR Recommended Hepz
109 7.2.2 Verify Target ACT Achieved Sequential
110 7.2.2.1 Determine Post-Heparin ACT Sequential
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Cognitive workload levels vary according to
provider role and surgical phase

N=4 CABG, 5 AVR Inverted Root Mean Square of the Successive Differences by Provider Roles and Surgical Phase
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Computer
vision for
motion tracking

A: Density of individual’s position
over time

B: Team centrality over time
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Two structures Hepatocystic triangle Cystic plate
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Next questions...

* Has the machine learned enough? Or should the intervention be allowed to
continue learning (and improving)?

* |s the supporting suite of implementation strategies (eg, hardware configuration
and reliability, information display, or user education) optimized? Or are some
elements redundant or missing?

* Is the information provided bY<the SaMD of homogeneous accuracy and utility?
Or do some instructions “work” better than others?

* What characteristics of the healthcare delivery environment (eg, clinician
knowledge and attitudes, existing care patterns) influence the incremental
benefit?

 What characteristics of the patient population influence the incremental benefit?

* How do these features interact to influence the effect of the SaMD on the
proximate (eg, intra operative hypotension) and more important distal (eg, post
operative recovery) patient outcomes?
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This White Paper has identified eight HF/E principles that should be taken
into consideration in the successful use of Al in healthcare. These are:

SITUATION AWARENESS

Design options need to consider how Al can
support, rather than erode, people’s situation
awareness

WORKLOAD

The impact of Al on workload needs to be
assessed because Al can both reduce as well as
increase workload in certain situations.

AUTOMATION BIAS

Strategies need to be considered to guard against
people relying uncritically on the Al, e.g., the use
of explanation and training.

EXPLANATION AND TRUST

Al applications should explain their behaviour
and allow users to query it in order to reduce
automation bias and to support trust.

HUMAN-AI TEAMING

Al applications should be capable of good
teamworking behaviours to support shared mental
models and situation awareness.

TRAINING

People require opportunities to practise and retain
their skill sets when Al is introduced, and they need to
have a baseline understanding of how the Al works.

RELATIONSHIPS BETWEEN
STAFF AND PATIENTS

The impact on relationships needs to be considered,
e.g., whether staff will be working away from the
patient once more and more Al is introduced.

ETHICAL ISSUES

Al in healthcare raises ethical challenges including
faimess and bias in Al models, protecting privacy,
respecting autonomy, providing benefits and
minimising harm.




npE| | digital medicine

ARTICLE
A Delphi consensus statement for dieital surgery

Digital Surgery

* “The use of technology for the enhancement
of preoperative planning, surgical
performance, therapeutic support or training,

to improve outcomes and reduce harm”

Lam et al. npj Digital Medicine (2022)5:100
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Five Pillars of Digital Surgery

Advanced Enhanced e Data Analvytics &
Connectivity 4

Robotics
Instrumentation Visualization Aachine L earning




Al, Autonomous Operations,
and Human-Machine Teaming
continue to evolve at an
unprecedented pace




Negative outcomes

Ineffective methods

Aspects of surgical

decision-making

Effective methods

Positive outcomes

Decreased stamina,
impaired cognition

Manual data acquisition
and management

A

High decision-making
volume and complexity

l

Automated data
acquisition and
management

Error and
preventable harm

A

Heuristics and bias

A

Time constraints and
uncertainty

i

Avoidance of negative
outcomes associated
with fatigue

T

Augmentation with accurate
predictive analytics and
decision-support systems

Y

Inconsistent and unreliable
decision-making

Performed in isolation

A

Hypothetical-deductive
reasoning and individual
judgment

Optimal
decision-making

Integration with human
intuition fueled by
bedside assessment

|

Recognition of patterns that
are beyond the reach
of modern computers




One-dimensional thinking on automation
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Two-dimensional Al

Human-Centered Al

Human

Trusted, Reliable & Safe
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Control

Computer
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SITUATION AWARENESS

Design options need to consider how Al can
support, rather than erode, people’s situation
awareness

WORKLOAD

The impact of Al on workload needs to be
assessed because Al can both reduce as well as
increase workload in certain situations.

AUTOMATION BIAS

Strategies need to be considered to guard against
people relying uncritically on the Al, e.g., the use
of explanation and training.

EXPLANATION AND TRUST

Al applications should explain their behaviour
and allow users to query it in order to reduce
automation bias and to support trust.

HUMAN-AI TEAMING

Al applications should be capable of good
teamworking behaviours to support shared mental
models and situation awareness.

TRAINING

People require opportunities to practise and retain
their skill sets when Al is introduced, and they need to
have a baseline understanding of how the Al works.

RELATIONSHIPS BETWEEN
STAFF AND PATIENTS

The impact on relationships needs to be considered,
e.g., whether staff will be working away from the
patient once more and more Al is introduced.

ETHICAL ISSUES

Al in healthcare raises ethical challenges including
fairess and bias in Al models, protecting privacy,
respecting autonomy, providing benefits and
minimising harm.



Explanations of autonomous teammates
acting counter to human expectations

* A viable means to remedying and resolving misunderstanding or
expectation violations produced by autonomous agents



