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ABSTRACT
Searching for scientific publications on the Web is a tedious
task, especially when exploring an unfamiliar domain. Typ-
ical scholarly search engines produce lengthy unstructured
result lists that are difficult to comprehend, interpret and
browse. We propose a novel method of organizing the search
results into concise and informative topic hierarchies. The
method consists of two steps: extracting interrelated topics
from the result set, and summarizing the topic graph. In the
first step we map the search results to articles and categories
of Wikipedia, obtaining a graph of relevant topics linked
with hierarchical relations. In the second step we sequen-
tially build nested summaries of the produced topic graph
using a structured output prediction approach. Trained on
a small number of examples, our method learns to construct
informative summaries for unseen topic graphs, and outper-
forms unsupervised state-of-the-art Wikipedia-based clus-
tering. We implement our method in an online tool working
on top of the search API of an existing academic search
service, enabling it with topic summary-based visualization
and browsing.

1. INTRODUCTION
We search for publications on a daily basis – to keep up
with our research fields, to expand our competences, to find
related work. The number of papers being published is far
beyond what a scientist can consume, so we have to be very
selective in what we read or even look through. Scholarly
digital libraries and search engines allow us to easily find pa-
pers provided we know, at least partially, their title or other
bibliographic data, such as authors, publication venue and
year. The way the search results are presented – the infa-
mous ‘ten blue links’ – however, proves insufficient for more
complex yet typical information seeking tasks. Whether re-
viewing related work or exploring a new research domain,
we often want to perceive the returned results as a whole,
identify the constituent topics, understand their span and
interrelations. We would also like to find papers more effi-
ciently without sifting through the overlong lists of mostly

irrelevant items. Grouping the search results according to
salient topics, were we be able to identify them, could help
in this regard. Concise and structured visual representation
of the topics would provide both the global picture and the
means to focus on the relevant details.

Predefined taxonomies provide a natural way of group-
ing the scholarly search results in a given scientific disci-
pline. Computer science publications, for instance, can be
organized with respect to ACM Computing Classification

System (CSS), and biomedical articles – with respect to
Medical Subject Headings (MeSH). One of the benefits of
such predefined taxonomies is that they provide hierarchi-
cal grouping of publications, which can be viewed at desired
level of granularity. Another benefit is that the groups have
well-defined semantics and meaningful labels corresponding
to the subtopics of the discipline in question. Hierarchical
relations between the subtopics provide additional useful in-
formation about the structure of the field in a visual way.

The main drawback of the predefined taxonomies is that
they have to be manually created and maintained up to
date, which requires significant effort. For example, ACM
reports 120 computing specialists having worked on the new
version of Computing Classification System1. Assigning
new articles to existing categories manually is impractical at
the scale of a search engine like Google Scholar, when the
collection of publications is expanded in an automated way
while crawling the Web. Categorizing the articles automat-
ically, on the other hand, is a nontrivial task.

Another shortcoming of the predefined taxonomies is that
they often represent a rather coarse-grained structure of
the field. For instance, ACM CSS may tell that Data min-
ing is a subfield of Information systems applications and
includes Association rules, Collaborative filtering and Clus-
tering. Clustering is, however, a leaf node in the taxonomy,
and no information about its subfields is available.

Unsupervised learning methods, such as clustering, self-
organizing maps or latent topic models, constitute an alter-
native approach to grouping and visualization of the schol-
arly search results. The advantage of this approach is that
grouping is completely automatic, while the main draw-
back is that the results of the grouping are not easily inter-
pretable. Firstly, some of the discovered groups may simply
not correspond to distinct topics relevant to a human user.

1http://www.acm.org/news/featured/2012-acm-ccs



Secondly, most of the unsupervised learning techniques pro-
vide no meaningful labels for the groups; and although there
have been research efforts towards generating labels for doc-
ument collections [37, 31, 39], the results are not yet as ex-
pressive and meaningful as manually created topic names.

Another limitation inherent to most of the unsupervised
grouping methods is the necessity of choosing the number
of groups (clusters, topics, etc.), with hierarchical clustering
being a notable exception. In order to discover meaningful
topics in the result set, unsupervised models have to be pre-
viously built on a large corpus of data, a “universal dataset”
[29], which is usually a computationally expensive task that
cannot be performed on the fly. For most of the methods this
implies choosing all the parameters, such as the number of
topics, beforehand and once and for all further inputs. The
chosen topic granularity has to remain fixed, even though it
may not be optimal for specific users and queries.

Wikipedia is a large online encyclopedia that is collabora-
tively edited by Web users. In this work we propose using
articles and categories of Wikipedia for grouping the results
of academic search. Containing over 4 million articles in En-
glish alone, Wikipedia covers a broad range of subjects with
considerable level of detail. For instance, considering our
previous example, Wikipedia contains not only an article on
Clustering, but also articles on a variety of specific cluster-
ing methods, such as K-means, Spectral clustering, DBSCAN
and BIRCH, and different clustering criteria, such as Rand
index and Fowlkes-Mallows index. Recently developed tech-
niques allow annotating texts with links to Wikipedia ar-
ticles [9, 26, 13, 25], which provides the basis for grouping
texts according to article-based topics. Moreover, articles
in Wikipedia are arranged into categories that form a sub-
sumption hierarchy and can be viewed as higher-level top-
ics. The network of categories provide for informative visual
representation of topics, with possibility to focus on a de-
sired level of generality. Because of the described properties,
Wikipedia can be viewed as constantly collaboratively up-
dated fine-grained taxonomy of topics with available mech-
anisms of assigning texts to its nodes. Using Wikipedia for
representing academic search results thus combines most of
the advantages and avoids most of the drawbacks of both
predefined taxonomies and unsupervised learning methods.

In this paper we propose grouping academic search results,
and document collections in general, according to concise
hierarchical topic summaries derived from Wikipedia (see
Figure 1 for an example). Given a document collection, we
first build a large graph of relevant topics with the help of
topic annotators, and then select the most informative sub-
graph thereof to serve as a topic summary. Selecting the
summary that most informatively represents the documents
is a challenging problem, first, due to its combinatorial na-
ture, and second, due to the subjectivity and subtlety of the
notion of informativeness. In this paper we propose a novel
approach to building informative summaries through struc-
tured output prediction. We construct the summary sub-
graphs sequentially, ‘growing’ them from smaller subgraphs,
which allows us to alleviate the complexity of the problem,
while maintaining the collective contribution of topics into
the quality of the summary. In order to capture the prop-
erties important for good topic summaries, we learn how

to grow such summaries from given examples. We demon-
strate that our method is able to learn from a small number
of examples, and produce informative topic summaries for
unseen document collections.

In the following Section 2 we review existing approaches to
representing search results and finding topics in document
collections. In Sections 3 and 4 we show how to extract
topic hierarchies from Wikipedia and describe our method
of topic graph summarization. In Section 5 we report on the
evaluation of the proposed method. We present S*******n

– a prototype web tool for browsing academic search results
in Section 6, and conclude the paper in Section 7.

2. RELATED WORK
The benefits of the structured representation of search re-
sults have long been realized in the area of general Web
search. Cutting et al. [10] first introduced a clustering
method, Scatter/Gather, as a metaphor for exploring docu-
ment collections, while Hearst and Pedersen evaluated this
method in the context of Web search [18]. A variety of
clustering algorithms have since been applied to Web search
results. We refer the reader to [7] for an extensive survey on
the subject. The problem of choosing the meaningful clus-
ter labels has always remained crucial. Selecting the labels
after and independently of the clustering phase is a difficult
problem. Most of the approaches produce cluster labels as
sets of frequent words that are not grammatically or other-
wise connected [7]. Zamir and Etzioni [42] suggested using
a suffix tree for discovering phrases to form initial cluster
seeds and serve as cluster labels. Another influential work
of Osiriski et al. [30] represents the class of methods built
around the central goal of providing the meaningful clus-
ter labels. This work is also an early example of using a
dimensionality reduction technique (Singular Value Decom-
position [12]) for discovering topics in search results. Other
data mining techniques that have been applied to this prob-
lem include agglomerative clustering [24], k-means clustering
[41], concept lattices [8], and probabilistic topic models [29].

An important distinction of our work is that it targets aca-
demic search rather then general Web search. Organizing
the results of academic search has not been discussed widely
in the literature. However, there has been a substantial
amount of research into organizing publication collections,
discovering and visualizing scientific topics and identifying
research trends. Some of the developed methods can be
applied generally for document datasets, while others ex-
ploit features specific to research papers, such as citations.
Probabilistic topic models represent a class of methods that
have been extensively employed in the context of scientific
papers. Griffith and Steyvers [15] applied Latent Dirich-
let Allocation (LDA) [4] – a general-purpose topic model –
to a collection of abstracts from PNAS. A correlated topic
model [3] developed by Blei and Lafferty improved upon
LDA by introducing pairwise topic correlations. Pachinko
allocation [23] allowed more complex and sparse topic corre-
lations by modeling topic mixtures through directed acyclic
graphs. It is also an example of a topic model with hierarchi-
cal relations between topics, another example being hLDA
(Hierarchical Latent Dirichlet Allocation) [1]. Specific topic
models have been developed to account for various aspects
of scientific literature, such as explicit document authorship



Figure 1: Example summary of 100 search results for the query “quadratic programming”.

[32], author interests [22], publication venues [38], temporal
ordering of the documents [5], topic evolution [2, 17] and
citations [40, 28, 11, 17]. As we already mentioned in the
introduction, the main drawback of topic models is that they
do not address the problem of meaningful topic labeling.

Using external knowledge sources, such as Wikipedia, for
organizing search results and documents in general has also
been discussed in the literature. Gabrilovich and Markovitch
[14] proposed representing texts as weighted combination
of concepts based on Wikipedia articles for the purpose of
computing semantic relatedness between texts. Jinarat et
al. [20] mapped search results to the categories of the Open
Directory Project in order to improve search result cluster-
ing. Jiang et al. [19] used WordNet categories to select the
number of clusters and initial cluster centroids in k-means
algorithm applied to search results. Sameh and Kadray [35]
modified the frequent phrase extraction in the Lingo algo-
rithm by generating phrase synonyms using WordNet.

Wikipedia has also been used in a number of works on search
result clustering. Han and Zhao [16] proposed grouping the
search results according to topics defined as communities in
the graph of semantic relatedness between concepts. Săcărea
et al. [34] exploited redirects and disambiguation pages of
Wikipedia to improve the clustering algorithm based on the
formal concept analysis. In the work of Calli et al. [6] se-
mantic relations derived from Wikipedia were used to im-
prove the performance of the Suffix Tree Clustering algo-
rithm. Similarly to our work, Scaiella et al. [36] annotated
the search result snippets with links to Wikipedia articles.
The grouping of the results in their approach is performed
based on the spectral clustering of the graph of snippets and
topics. In contrast to these works, we use both articles and
categories of Wikipedia to directly represent topics in the
result set, and rely on their hierarchical relations for further
grouping and visualization. More importantly, starting from
a document-topic graph, we cast the further summarization
problem into structured output prediction, which allows us
to learn a scoring function combining multiple different fea-
tures in a non-trivial way.

3. BUILDING THE TOPIC GRAPH
In this section we describe the procedure of extracting the hi-
erarchy of topics – valid, useful and relevant for a collections
of documents – from Wikipedia. As an input we assume to
have a collection of documents D = {d1, d2, ..., dN}. In the
scenario of academic search, the documents may be publi-
cation abstracts retrieved by an academic search engine for
some query. The result of this step is a topic graph G(V,E),

in which links (v, v′) ∈ E represent hierarchical parent-child
relations between the topics, and a relation R ⊆ V × D,
which defines which documents are relevant to which topics.
In order to present a valid hierarchy, the topic graph G must
be acyclic.

3.1 Deriving the Topic Graph from Wikipedia
We treat both articles and categories of Wikipedia as top-
ics, with topic v1 being the parent of v2 whenever v1 is listed
among the categories of v2. The whole procedure of building
the topics graph consists of the following steps: a) mapping
documents to Wikipedia articles, b) retrieving the parent
categories, c) merging duplicate topics, d) breaking the cy-
cles in the topic graph and e) extending the main topic.

Mapping the documents to Wikipedia is performed
using wikification procedure. In essence, wikification is aug-
menting arbitrary texts with links to Wikipedia articles, in
much the same way as Wikipedia articles are linked to each
other. Among the various approaches to wikification that
can be used at this step, we select one described in [26], as
it is implemented in an open source tool Wikipedia Miner
[27]. Using machine learning and statistics derived from
Wikipedia pages, Wikipedia Miner decides which phrases in
the text should be linked to Wikipedia, and which articles
they should be linked to. We concatenate the texts of the
documents into a single string and submit it to Wikipedia
Miner for wikification. The returned string augmented with
links to Wikipedia articles is then split back into documents,
and each document is associated with the set of topics cor-
responding to the articles to which its text has been linked:

R := {(v, d)| the wikified text of d contains a link to v},

V := {v| ∃d, (v, d) ∈ R}.

Retrieving the parent categories is a step that allows
us to establish relations between the topics, which in turn
provides the main tool for generalization and summariza-
tion. For every article v obtained at the previous step, we
augment the discovered set of topics V with all its parent
categories:

V := V ∪ parent categories(v),

E := E ∪ {(c, v)|c ∈ parent categories(v)}.
As we want to avoid topics that are too general or to ab-
stract, we perform the above step only once, that is we do
not explicitly retrieve further ancestors of the parent cat-
egories. However, the following step typically introduces
more distant hierarchical relations in our topic graph.



Merging duplicate topics. Some of the topics have both
an associated article and a category in Wikipedia. In or-
der for our topic graph to contain no redundant nodes, we
merge such duplicate topics into one. In addition, we merge
near-duplicate topic whose titles coincide up to lemmatiza-
tion, such as, for instance, the article on Decision tree and
the category Decision trees. As from the pair of topics be-
ing merged one topic is typically an article, and another is a
category, the resulting topic will have both parent and child
relations. As a result, during this step the formerly bipartite
graph G transforms into a general directed graph contain-
ing paths of various lengths. After this step we erase the
distinction between articles and categories and from now on
treat them uniformly as topics.

Breaking the cycles. The category graph of Wikipedia
contains occasional cycles2, and does not thus form a perfect
hierarchy. For the purpose of our method we detect and
break the cycles in the topic graph using a depth-first search
starting from the ‘root’ topics (those without parent topics).

Extending the main topic. Having experimented with
academic search results for various queries, we noticed that
main topic of the query often has no children in the topic
graph. The reason for that is that the queries we are inter-
ested in are usually quite specific: for instance, we will more
likely query for statistical relational learning than for ma-
chine leaning. Wikipedia is often sufficiently fine-grained to
contain articles on such specific topics, but not entire cat-
egories. This results is these topics being present only as
leafs in our topic graph. The processing we perform at this
step allows us to amend this situation to some extent.

The idea is quite simple: we can detect the main topic of our
document collection and link it to candidate child topics. For
example, when querying for statistical relational learning,
we would like to see Markov logic networks as a child of the
corresponding main topic. For the purpose of detecting the
main topic, selecting the topic that has the most associated
documents has proven a good heuristic. When extending
the main topic vmain with a child topic v we require the
following properties to hold: a) v should be already present
in the topic graph (v ∈ V ), b) Wikipedia article about vmain

should contain a link to the article about v, c) v should not
be an ancestor of vmain in the topic graph. Interestingly,
the child nodes v introduced in this way are often not the
proper subtopics of vmain, but can be viewed as such in the
context of the query (think, for instance of Regularized trees,
Stepwise regression and LASSO in the context of Feature
selection). The described heuristic procedure thus usually
transforms the topic graph in a useful way, providing the
main topic with an informative sub-structure.

4. SUMMARIZING THE GRAPH
The topic graph G and topic-document relation R built at
the previous step contain useful information about the dis-
tribution of topics in our document collection D. However,
at this point the graph is too large to be an informative
visual representation of the documents: for a hundred of
publication abstracts, the typical number of topics in G ex-

2According to Wikipedia, Artificial intelligence is both a
parent and a subcategory of Cognitive science

ceeds two hundred. At this step we select a subgraph of G
to be used as a visual summary of the document collection.
Given a limit T on the number of topics in the summary,
our goal is to select the subgraph GT that represents the
collection of documents in the most informative way.

We do not intend to grasp the exact notion of ‘informative-
ness’, which may not be objectively definable. Instead we
define properties that are favourable for good topic sum-
maries and learn their correct proportions from examples.
We elaborate on the properties in Section 4.3, while in the
following section we describe problem of learning and pre-
dicting the summaries.

4.1 The Learning Problem
Viewed as a standard structured prediction problem, our
goal is to learn a scoring function

Fw(G,R,GT ) = 〈w,Ψ(G,R,GT )〉 (1)

that is maximized by good topic summaries, and then con-
struct summaries for new graphs G by maximizing this func-
tion over the set of all possible subgraphs:

ĜT = argmax
|GT |=T

Fw(G,R,GT ). (2)

Computing the argmax is generally prohibitively expensive,
as it requires evaluating the scoring function over

(|V |
T

)
sub-

graphs. We alleviate this problem by imposing an additional
constraint that is natural for our settings. Specifically, we
require that for a given input graph G the optimal topic
summaries of different sizes should be nested:

Ĝ1 ⊂ Ĝ2 ⊂ ... ⊂ ĜT .

In other words, bigger summaries can be obtained from
smaller ones by only adding new topics:

Ĝt(V̂t, Êt), Ĝt+1(V̂t+1, Êt+1)⇒ V̂t+1 = V̂t ∪ {vt+1}.

This requirement is justified by the principle of least sur-
prise: when moving from less to more detailed summaries,
the user will likely not expect the topics to disappear. Con-
sidering this requirement, the problem can be reformulated
as predicting the sequence of topics v̂1, v̂2, ..., v̂T whose pre-
fixes constitute the nodes of intermediate summary graphs.
Assuming that we have ‘ground truth’ examples of the form
((G,R), (v1, ..., vT )), we can view this as an imitation learn-
ing problem, in which we want to copy the expert’s be-
haviour in selecting the topics (v1, ..., vT ).

DAgger (Dataset Aggregation) framework [33] allows us to
cast this problem into the problem of training a local pol-
icy that predicts the best next action (topic vt+1) given the
current state (initial input (G,R) plus the current summary

Ĝt). In essence, DAgger ensures that such a policy be-
haves well when applied to its own-generated, rather then
optimal, states. The way this is accomplished is by itera-
tively retraining the policy on a updated training set. At
each iteration the training set is augmented with examples
((G,R, Ĝt), v

opt
t+1), in which inputs (G,R, Ĝt) are produced

by the current policy, and outputs voptt+1 are optimal actions
provided by the expert.

Applying DAgger requires two ingredients:



1. a policy π : (G,R, Ĝt) 7→ v̂t+1 that can be trained on

examples ((G,R, Ĝt), vt+1), and

2. an ‘expert’ π∗ : (G,R, v1, v2, ..., vT , Ĝt) 7→ voptt+1 that

can produce optimal actions voptt+1 given the true opti-
mal sequence v1, v2, ..., vT and a current (non-optimal)

state (G,R, Ĝt).

Providing the policy. In order to build the policy π, we
need a classifier that can learn how to map an intermediate
topic graph (G,R, Ĝt) to the best next topic v̂t+1. We view
this as structured prediction problem similar to the formu-
lations (1, 2). Specifically, during training we would like to
learn a linear function

Fw(G,R, Ĝt, vt+1) = 〈w,Ψ(G,R, Ĝt, vt+1)〉 (3)

that is maximized by optimal decisions vt+1. The prediction
is then performed by maximizing the learned function for a
given input (G,R, Ĝt) over the possible set of topics:

v̂t+1 = argmax
vt+1 /∈Ĝt

Fw(G,R, Ĝt, vt+1). (4)

The important distinction from the formulations (1, 2) is
that argmax is computed over the set of topics (rather then
subgraphs), which is feasible. We solve this prediction prob-
lem by using SVMrank instantiation of the SVMstruct soft-
ware [21]. In order to compute the partial ranking rG,R,Ĝt

of different solutions v̂t+1 for a given input (G,R, Ĝt) we
define a loss function between the sequences

`G,R((v1, v2, ..., vt+1), (v′1, v
′
2, ..., v

′
t+1)), (5)

and compute it with respect to the optimal decision:

rG,R,Ĝt
(v̂t+1) = −`G,R((v̂1, v̂2, ..., v̂t+1), (v̂1, v̂2, ..., vt+1)).

In our experiments we defined `G,R to be a 0/1 loss, which
corresponds to specifying no preferences between non-optimal
decisions, which in turn results in fewer constraints and an
easier problem for SVMrank.

Providing the expert actions. At each iteration of DAgger
we need to compute the optimal actions voptt+1 for all states

(G,R, Ĝt) generated by our current policy. This is accom-
plished by minimizing the loss with respect to the true op-
timal sequence:

voptt+1 = argmin
v̂t+1

`′G,R((v̂1, v̂2, ..., v̂t+1), (v1, v2, ..., vt+1)).

In these settings 0/1 loss is inappropriate, as it gives equal
score to all non-optimal sequences, rendering the minimiza-
tion problem meaningless in most cases. An obvious can-
didate for `′G,R is Jaccard distance function. However, it
turns out that Jaccard distance does not take into account
the similarity between the topics: it tends to add topics
from the optimal sequence, even when the non-optimal par-
tial sequence already contains similar topics. In other words,
it encourages redundancy in the built topic summaries.

We designed a matching-based loss function `′G,R that does
not suffer from this problem:

`′G,R(..., ...) = 1−match(..., ...) (6)

The matching score greedily assigns best-scoring candidate
topics to the topics from the optimal sequence, starting from
the first optimal topic v1. The score of the assignment (v, v′)
is computed as Jaccard distance between the sets of docu-
ments transitively associated with the topics v and v′, plus a
constant α if v = v′. The final matching score is the average
of the assignment scores divided by 1 + α.

4.2 Connecting topics and documents
The learning procedure described above allows us to sequen-
tially select the topics v1, v2, ..., vT to be included into the
topic summary GT . In order to completely define the sum-
mary graph, we need to decide how to connect the topics
with links. On one hand, we want to maintain the hierar-
chical relations between the topics in the graph, but on the
other hand we do not want to clutter the topic summary
with unnecessary links. The way we solve this problem is
by introducing the minimum possible number of links that
still maintain the hierarchical structure of the original topic
graph: for every vi, vj ∈ VT such that vi is an ancestor of vj
in the original graph G, vi must be the ancestor of vj in the
topic summary GT . Technically this amounts to computing
the transitive closure G+(V,E+) of the original graph, se-
lecting the subgraph of G+ containing the nodes v1, v2, ..., vT
and computing the transitive reduction of the result.

It is important to mention how documents are assigned to
the nodes of the summary graph. After the summary graph
is built, we compute a new transitive topic-document rela-
tion R+

T . A document d is assigned to the topic v whenever
it was assigned to any of the descendant topics of v in the
original graph:

R+
T = {(v, d)|v ∈ VT ,∃v′ ∈ V, (v, v′) ∈ E+, (v′, d) ∈ R}.

4.3 Features
An important step of the algorithm is computing the joint
feature representation Ψ(G,R, Ĝt, vt+1) for the problem (3,
4). Based on the features, the policy π should be able
to learn how to add topics vt+1 to intermediate summary
graphs Ĝt. The features we use measure various proper-
ties of the graph Ĝt+1(V̂t+1, Êt+1) that results from adding

the topic vt+1 to the summary Ĝt+1. We compute proper-
ties that describe the structure and the look of the resulting
summary, as well as the topic-document relations it induces.

The main set of features is related to frequency and diversity
of the topics v̂i ∈ V̂t+1 in the summary:

1. document coverage:∣∣∣{d ∈ D| ∃v ∈ V̂t+1, (v, d) ∈ R}
∣∣∣

2. transitive document coverage:∣∣∣{d ∈ D| ∃v ∈ V̂t+1, (v, d) ∈ R+}
∣∣∣

3. average and minimum topic frequency, where:
topic freq(v) = |{d ∈ D| (v, d) ∈ R}|

4. average and minimum transitive frequency, where:
trans topic freq(v) =

∣∣{d ∈ D| (v, d) ∈ R+}
∣∣

5. average and maximum topic overlap, where:

overlap(vi, vj) =
|{d∈D| (vi,d)∈R+∧(vj ,d)∈R+}|
|{d∈D| (vi,d)∈R+∨(vj ,d)∈R+}|



6. average pairwise distance between the topics, where
distance is the length of the shortest path through a
common ancestor in the original graph

7. partition coefficient (measures how crisp are the topics
viewed as fuzzy clusters of documents)
1
N

∑N
i=1

1

|{v∈V̂t+1| (v,di)∈R+}|

Another feature measures the unevenness of the sizes (tran-
sitive frequencies) of sibling topics in the summary. Finally,
one feature is dedicated to measuring the percent of topics
in the summary graph that are subtopics of the main topic
(see “Extending the main topic”, Section 3).

5. EVALUATION
We carried out the evaluation of the proposed method on
the search results obtained from Microsoft Academic Search
(MAS)3 for 10 distinct queries. For each query we collected
one hundred top results from MAS, discovered the topics in
their titles and abstracts, and built the topic graph as de-
scribed in Section 3. The topic graphs were then annotated
with ‘ground truth’ topic sequences of length 8, correspond-
ing to nested summaries of the topic graphs. The summaries
were selected so as to represent the search results and the
discovered topics in the most informative way according to
our judgement.

The method was evaluated on the task of predicting the
topic sequences using leave-one-out cross-validation on the
described dataset. Two different performance metrics were
used: precision@n and match@n. Precision@n measures the
percent of correctly predicted topics in the subsequence of
length n, taking into account only exact matches. Simi-
larly, match@n measures the match score (6) between the
subsequences of length n, thus allowing for partial matches
between similar topics. For the sake of comparison we imple-
mented a baseline greedy coverage algorithm, and adapted
the spectral clustering-based method of Scaiella et al. [36].

5.1 Baseline GreedyCov algorithm.
An implemented baseline algorithm GreedyCov selects top-
ics by greedily optimizing the document coverage. That is,
at each step it selects the topic that covers most of the doc-
uments that are not covered by previously selected topics.
We should note that this is a reasonable baseline: it opti-
mizes both the frequency and the diversity of the selected
topics, both properties being important for a good summary.
Accordingly, the feature responsible for document coverage
received one of the largest weights in our learning algorithm.
Moreover, the first topic selected by this greedy baseline co-
incides with the ‘main topic’ in the collection, as it is ap-
proximated in our approach (as described in “Extending the
main topic”, Section 3). As during the labeling we always
selected the true main topic first, the baseline approach se-
lected the first topic correctly, whenever our approximation
was correct. Our method can also be seen as greedily opti-
mizing a linear combination of features, the difference being
that the feature weights are learned from the training data.

3http://academic.research.microsoft.com/
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Figure 2: Match@n of predicted topics. Dotted
black line corresponds to the baseline GreedyCov

method, dashed grey line – to LSC. Solid orange
and red lines correspond to our method at the 1st
and the 10th iteration of DAgger respectively; thin
dashed orange lines – to intermediate iterations.

5.2 Labeled spectral clustering.
Scaiella et al. [36] recently proposed a novel method for
search result clustering based on Wikipedia. The method
performs a particular form of spectral clustering on the graph
of documents and topics, with subsequent selection of clus-
ter labels. For convenience we will refer to this method as
LSC (labeled spectral clustering). In the first step of LSC

the documents (search result snippets) are annotated with
links to Wikipedia articles using TAGME topic annotator
[13]. For each document-topic link (d, v) TAGME provides
an importance score ρ(d, v), which is used as link weight
in the resulting weighted bipartite document-topic graph.
The graph is then augmented with between-topic links (v, v′)
that are weighted according to topic relatedness. The relat-
edness between topics rel(v, v′) is also computed by TAGME
and is based on the incoming citations of the corresponding
Wikipedia articles.

In the following graph pre-processing step the most signifi-
cant topics are selected. The algorithm views topics as doc-
ument sets, and selects significant topics by greedy solving
a variation of the set cover problem that takes into account
document-topic weights. In the classical set cover problem,
sets fully “cover” their contained elements; at each step the
greedy algorithm selects the set that covers the most ele-
ments not covered by the previously selected sets; and the al-
gorithm proceeds until all elements are covered. In contrast,
we consider topics as covering the documents only partially,
with the degree of coverage being equal to the corresponding



topic-document link weights ρ(d, v). In our implementation
of LSC we maintain the set of documents D = {d}, each
with the associated volume vol(d) that remains to be cov-
ered. The volumes are initialized to one (vol(d) := 1); each
selected topic v reduces the remained document volumes by
the amount min(ρ(d, v), vol(d)); and the greedy algorithm
selects topics that reduce the total volume the most until
all documents are covered (vol(d) = 0). After this step the
graph is restricted to only significant topics and documents
associated with them.

In the original method of Scaiella et al., topics that cover
more then fifty percent of the documents are removed from
the graph prior to selecting significant topics. This step is
justified in the task of plain clustering considered in [36], as
overly frequent topics do not help discriminating between
the documents. In our approach, the most frequent topics
often corresponds to the main topics of the search query, and
are arguably useful for our hierarchical topic representation.
Therefore we omit this step in our implementation of LSC.

In the following step the topics are iteratively clustered based
on the spectral properties of the graph of topics v and their
relations rel(v, v′). At each iteration the algorithm selects
one of the big clusters – those covering more than δmax doc-
uments – and splits it in two. Informally, the algorithm
ensures that the sparsest of the big clusters is selected, and
that the split goes through the sparse region of the corre-
sponding topic subgraph. As recommended in [36], in order
to obtain T final clusters we build T + m − 1 clusters with
the described algorithm and then merge m smallest clusters
into one. Finally, each cluster is labeled with the topic that
has is most strongly associated with the documents in the
cluster, as measured by document-topic weights ρ(d, v). We
treat the produced cluster labels as a final output of LSC

constituting the topical representation of the search results.

Overall there are the following main differences between LSC

and our algorithm: a) LSC uses only Wikipedia articles to
represent topics, while we use both articles and categories;
b) LSC relies on similarity-based relatedness between topics,
while we rely on hierarchical relations in the article-category
network; c) in LSC topic aggregation is performed on the ba-
sis of clustering, while in our method – on the basis of topic
generalization (based on the hierarchy); d) LSC selects
topics through unsupervised procedure of labeled clustering,
while we rely on supervised structured output prediction.

5.3 Details of the evaluation setup
For the ease of comparison, we used TAGME [13] as a topic
annotator for all the three algorithms (thus running LSC, the
method of Scaiella et al. [36], in the original settings). When
evaluating the results produced by LSC, we first embedded
them into the topic graph built as described in Section 3, in
order to correctly match the results to ‘ground truth’ topics,
in particular to capture the matches between similar topics.

The employed evaluation metrics precition@n and match@n
assess the sequences of summary graphs of increasing sizes
t ∈ 1, 2, ..., T , as they are produced by our method. In order
to evaluate the method of Scaiella et al. on the same ba-
sis, we ran LSC varying the parameter values, and for each
t selected the best average result across folds according to

the metric in question. For simplicity, δmax was fixed at the
value of 3 which is arguably the smallest number of docu-
ments we would like to see in the cluster. We should note
that changing the value of δmax did not notably affect the re-
sults, which confirms the robustness of the method reported
by Scaiella et al. The value of m – the number of the small-
est clusters to be merged – was ranged from 1 to 5, which
in our experiment corresponded to producing from 8 to 12
clusters prior to merging. The performance of our method
was taken at the iterations of DAgger from one to ten.

Figure 3: Topic summaries for search results on di-
mensionality reduction produced by (from the top):
manual labeling, our method, GreedyCov and LSC.

5.4 Evaluation results
Figure 2 shows the performance of the three evaluated meth-
ods in terms of match@n. The figure for precision@n is omit-
ted for space reasons (the metric exhibits similar behaviour).
The first iteration is equivalent to not using DAgger, which
corresponds to training only on the states encountered in
the ground truth labeling. As we can see from the figure, at
n = 1 the curves coincide, as for each of the 10 queries the
methods happen to agree on the first predicted topic. As
the number of topics increases, the curves begin to diverge,
with growing advantage of our method over the other two.
The advantage over LSC (measured as difference between the



scores) becomes statistically significant with p-value of 0.05
starting from n = 3, and over GreedyCov – starting from
n = 6. The difference between the performance scores of
GreedyCov and LSC is not significant for any n. We should
note that the performance increase of our method after the
first iteration justifies the procedures of dataset aggregation.

We can see that GreedyCov performs reasonably well for
small n, which indicates that document coverage is an im-
portant characteristic for summary topic graphs of small
sizes. As more topics are added to the graph, the per-
formance of GreedyCov notably deteriorates. At the point
when most of the documents are covered by previously se-
lected topics, the greedy coverage strategy becomes subopti-
mal, as it starts to prefer “outlying” topic nodes. The spec-
tral clustering-based LSC method encourages regular topic
sizes both in terms of contained Wikipedia articles and doc-
uments. The drawback of LSC in the context of our task is
that it is designed for plain rather than hierarchical cluster-
ing. In general, we can conclude that, being unsupervised
methods, LSC and GreedyCov encode some of the useful prop-
erties of the topic summaries. However, as they are not
specifically tailored for producing hierarchical summaries of
various sizes, the captured properties are not sufficient for
building the sequences of informative summary graphs. In
these settings our supervised method has an advantage, as it
is able to learn how to combine multiple properties in order
to build high-quality summary sequences. Figure 3 shows
an example of the “ground truth” topic summary for the
query dimensionality reduction along with the summaries
produced by the evaluated methods.

6. PROTOTYPE IMPLEMENTATION
We implemented our method of building the topic sum-
maries into a prototype Web tool S*******n for academic
search. The tool relies on the API4 of Microsoft Academic

Search for obtaining the query results and groups the re-
sults into topics according to our method. S*******n shows
a familiar user interface for typing in queries and display-
ing results, and an additional browsing control – the topic
summary (see Figure 4). The nodes of the topic summary
serve as interactive filters restricting the displayed results
to the selected node and its subtopics. The size of a node
depends on the number of results it contains. The number
of nodes in the displayed summary can be adjusted using
a slider control. We deployed S*******n and made it pub-
licly available at http://s*******n.*************/. The
tool demonstrates the applicability of our method to online
processing of academic search results and building browsing
interfaces on top of existing scholarly services.

7. CONCLUSION
We introduced a method for grouping academic search re-
sults according to Wikipedia categories and article pages.
The method produces concise and structured topical sum-
maries useful for visualization and browsing. The topics in
the summaries are fine-grained, meaningfully labeled and
up to date due to the nature of Wikipedia. We developed a
novel algorithm based on structured prediction that learns
how to produce informative topic summaries from a small
number of examples. The proposed method relies on the

4http://academic.research.microsoft.com/About/Help.htm#4

publicly available data, and can be implemented on top of
existing academic search services.
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