
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Constructive Learning Modulo Theories

Stefano Teso TESO@DISI.UNITN.IT

DISI, University of Trento, Italy

Roberto Sebastiani ROBERTO.SEBASTIANI@UNITN.IT

DISI, University of Trento, Italy

Andrea Passerini PASSERINI@DISI.UNITN.IT

DISI, University of Trento, Italy

1. Introduction
Modelling problems containing a mixture of Boolean and
numerical variables is a long-standing interest of Artificial
Intelligence. However, performing inference and learning
in hybrid domains is a particularly daunting task. The abil-
ity to model these kind of domains is crucial in “learn-
ing to design” tasks, that is, learning applications where
the goal is to learn from examples how to perform auto-
matic de novo design of novel objects. Apart from hybrid
Bayesian Networks, for which efficient inference is limited
to conditional Gaussian distributions, there is relatively lit-
tle previous work on hybrid methods. The few existing at-
tempts (Goodman et al., 2008; Wang & Domingos, 2008;
Närman et al., 2010; Gutmann et al., 2011; Choi & Amir;
Islam et al., 2012) impose strong limitations on the type
of constraints they can handle. Inference is typically run
by approximate methods, based on variational approxima-
tions or sampling strategies. Exact inference, support for
hard numeric (in addition to Boolean) constraints and com-
bination of diverse theories are out of the scope of these
approaches. In order to overcome these limitations, we fo-
cused on the most recent advances in automated reasoning
over hybrid domains. Researchers in automated reasoning
and formal verification have developed logical languages
and reasoning tools that allow for natively reasoning over
mixtures of Boolean and numerical variables (or even more
complex structures). These languages are grouped un-
der the umbrella term of Satisfiability Modulo Theories
(SMT) (Barrett et al., 2009). Each such language corre-
sponds to a decidable fragment of First-Order Logic aug-
mented with an additional background theory T , like lin-
ear arithmetic over the rationals LRA or over the integers
LIA. SMT is a decision problem, which consists in find-

Preliminary work. Under review by the Constructive Machine
Learning workshop @ ICML 2015. Do not distribute. An ex-
tended version of this work was accepted for publication at the
Artificial Intelligence Journal.

ing an assignment to both Boolean and theory-specific vari-
ables making an SMT formula true. Recently, researchers
have leveraged SMT from decision to optimization. The
most general framework is that of Optimization Modulo
Theories (OMT) (Sebastiani & Tomasi, 2015), which con-
sists in finding a model for a formula which minimizes the
value of some (arithmetical) cost function defined over the
variables in the formula.

In this paper we present Learning Modulo Theories (LMT),
a max-margin approach for learning in hybrid domains
based on Satisfiability Modulo Theories, which allows to
combine Boolean reasoning and optimization over con-
tinuous linear arithmetical constraints. The main idea is
to combine the discriminative power of structured-output
SVMs (Tsochantaridis et al., 2005) with the reasoning ca-
pabilities of SMT technology. Training structured-output
SVMs requires a separation oracle for generating counter-
examples and updating the parameters, while an inference
oracle is required at prediction stage to generate the highest
scoring candidate structure for a certain input. Both tasks
can be accomplished by a generalized Satisfiability Mod-
ulo Theory solver. We show the potential of LMT on an
artificial layout synthesis scenario.

2. LMT as structured-output learning
Structured-output SVMs (Tsochantaridis et al., 2005) gen-
eralize max-margin methods to the prediction of output
structures by learning a scoring function over joint input-
output pairs f(I,O) = wTψ(I,O). Given an input I , the
predicted output will be the one maximizing the scoring
function:

O∗ = argmax
O

f(I,O) (1)

and the problem boils down to finding efficient procedures
for computing the maximum. Efficient exact procedures
exist for some special cases. In this paper we are inter-

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Constructive Learning Modulo Theories

ested in the case where inputs and ouputs are combina-
tions of discrete and continuous variables, and we’ll lever-
age SMT techinques to perform efficient inference in this
setting. Max-margin learning is performed by enforcing a
margin separation between the score of the correct struc-
ture and that of any possible incorrect structure, possibly
accounting for margin violations to be penalized in the ob-
jective function. A cutting plane (CP) algorithm allows to
deal with the exponential number of candidate structures by
iteratively adding the most violated constraint for each ex-
ample pair given the current scoring function, and refining
it by solving the augmented quadratic problem with a stan-
dard SVM solver. The CP algorithm is generic, meaning
that it can be adapted to any structured prediction problem
as long as it is provided with: (i) a joint feature space repre-
sentation ψ of input-output pairs (and consequently a scor-
ing function f); (ii) an oracle to perform inference, i.e. to
solve Equation (1); and (iii) an oracle to retrieve the most
violated constraint of the QP, i.e. to solve the separation
problem:

argmax
O′

wTψ(Ii,O
′) + ∆(Ii,Oi,O

′) (2)

where ∆(Ii,Oi,O
′) is a loss function quantifying the

penalty incurred when predicting O′ instead of the correct
output O. In the following we will detail how these com-
ponents are provided within the LMT framework.

input-output feature map Recall that in our setting each
object (I,O) is represented as a set of Boolean and rational
variables:

(I,O) ∈ ({>,⊥} × . . .× {>,⊥})︸ ︷︷ ︸
Boolean part

× (Q× . . .×Q)︸ ︷︷ ︸
rational part

We indicate Boolean variables using predicates such as
touching(i, j), and write rational variables as lower-case
letters, e.g. cost, distance, x, y. Features are represented
in terms of (soft) constraints {ϕk}mk=1, each constraint
ϕk being either a Boolean- or rational-valued function of
the object (I,O). These constraints are constructed using
the background knowledge available for the domain. For
each Boolean-valued constraint ϕk, we denote its indicator
function as 1k(I,O), which evaluates to 1 if the constraint
is satisfied and to −1 otherwise. Similarly, we refer to the
cost of a rational-valued constraint ϕk as ck(I,O) ∈ Q.
The feature vector ψ(I,O) is obtained by concatenating
indicator and cost functions of Boolean and rational con-
straints respectively.

inference oracle Given the feature vector ψ(I,O), the
scoring function f(I,O) is a linear combination of indi-
cator and cost functions. Since ψ can be expressed in

terms of SMT(LRA) formulas, the resulting maximiza-
tion problem can be readily cast as an OMT(LRA) prob-
lem and inference is performed by an OMT-solver (we use
the OPTIMATHSAT solver 1). Given that OMT-solvers are
conceived to minimize cost functions rather than maximize
scores, we actually run it on the negated scoring function.

separation oracle The separation problem amounts at
maximizing the sum of the scoring function and a loss func-
tion over output pairs (see eq.(2)). We observe that by pick-
ing a loss function expressible as an OMT(LRA) problem,
we can readily use the same OMT solver used for inference
to also solve the separation oracle. This can be achieved by
selecting a loss function such as the Hamming loss in fea-
ture space:

∆(I,O,O′) := ‖ψ(I,O)−ψ(I,O′)‖1

This loss function is piecewise-linear, and as such satisfies
the desideratum. While this is the loss which was used in
all experiments, LMT can work with any loss function that
can be encoded as an SMT formula.

3. A Stairway to Heaven
We show the potential of the LMT framework on a toy con-
structive problem which consists in learning how to assem-
ble different kinds of stairways from examples. A stairway
is made up of a collection of m blocks (rectangles) in a
2D unit-sized bounding box. Figure 1 shows examples of
different types of stairways (a-c), varying in terms of orien-
tation and proportions between block heights and widths,
and a configuration which is not a stairway (d).

0 1
0

1

(a)

1

2

0 1
0

1

(b)

1

2

0 1
0

1

(c)

1

2

0 1
0

1

(d)

1

2

Figure 1. (a) A left ladder 2-stairway. (b) A right ladder 2-
stairway. (c) A right pillars 2-stairway. (d) not a stairway.

Each block is identified by a tuple (x, y, dx, dy), consisting
of bottom-left coordinates, width and height. An output O
is given by the set of tuples identifying the blocks. Input
is assumed to be empty in the following, but non-empty
inputs can used to model for instance partially observed
scenes.

Learning amounts to assigning appropriate weights to a set
of soft-constraints in order to maximize the score of stair-
ways of the required type, with respect to non-stairways

1http://optimathsat.disi.unitn.it/

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Constructive Learning Modulo Theories

and stairways of other types. Inference amounts to gen-
erating configurations (i.e. variables assignments to all
blocks) with maximal score, and can be easily encoded as
an OMT(LRA) problem. As a first step, we define a set of
hard rules to constrain the space of admissible block assign-
ments. We require that all blocks fall within the bounding
box, and that blocks do not overlap:

∀i 0 ≤ xi, dxi, yi, dyi ≤ 1

∀i 0 ≤ (xi + dxi) ≤ 1 ∧ 0 ≤ (yi + dyi) ≤ 1

∀i 6= j (xi + dxi ≤ xj) ∨ (xj + dxj ≤ xi) ∨
(yi + dyi ≤ yj) ∨ (yj + dyj ≤ yi)

Furthermore, we require (without loss of generality) blocks
to be ordered from left to right, ∀i xi ≤ xi+1. Note
that stairway conditions (apart from non-overlap between
blocks) are not included in these hard rules and will be im-
plicitly modelled as soft constraints. To this aim we intro-
duce a set of useful predicates. We use four predicates to
encode the fact that a block i may touch one of the four
corners of the bounding box, e.g.:

bottom right(i) := (xi + dxi) = 1 ∧ yi = 0

We also define predicates to describe the relative positions
of two blocks i and j, such as left(i, j):

left(i, j) := (xi + dxi) = xj ∧ ((yj ≤ yi ≤ yj + dyj)∨
(yj ≤ yi + dyi ≤ yj + dyj))

that encodes the fact that block i is touching block j
from the left. Similarly, we also define below(i, j) and
over(i, j). Finally, we combine the above predicates to
define the concept of step:

left step(i, j) := (left(i, j) ∧ (yi + dyi) > (yj + dyj)) ∨
(over(i, j) ∧ (xi + dxi) < (xj + dxj))

We define right step(i,j) in the same manner. This
background knowledge allows to encode the property of
being a stairway of a certain type as a conjunction of pred-
icates. However, our inference procedure does not have
access to this knowledge. We rather encode an appropri-
ate set of soft rules (costs) which, along with the associ-
ated weights, should bias the optimization towards block
assignments that form a stairway of the correct type. Our
cost model is based on the observation that it is possible
to discriminate between the different stairway types using
only four factors: minimum and maximum step size, and
amount of horizontal and vertical material. For instance,
in the cost we account for both the maximum step height
of all left steps (a good stairway should not have too high
steps) and the minimum step width of all right steps (good

stairways should have sufficiently large steps):

maxshl = m× max
i∈[1,m−1]

(yi + dyi)− (yi+1 + dyi+1)

if i, i + 1 form a left step
1 otherwise

minswr = m× min
i∈[1,m−1]

(xi+1 + dxi+1)− (xi + dxi)

if i, i + 1 form a right step
0 otherwise

The value of these costs depends on whether a pair of
blocks actually forms a left step, a right step, or no step
at all. Finally, we write the average amount of vertical ma-
terial as vmat = 1

m

∑
i dyi. All the other costs can be

written similarly. Putting all the pieces together, the com-
plete cost is:

cost := (maxshl,minshl,maxshr,minshr,

maxswl,minswl,maxswr,minswr,

vmat, hmat) w

The actual weights are learned, allowing the learnt model to
reproduce whichever stairway type is present in the training
data.

To test the stairway scenario, we generated “perfect” stair-
ways of 2 to 6 blocks for each stairway type to be used as
training instances. We then learned a model using all train-
ing instances up to a fixed number of blocks (e.g from 2 to
4) and asked the learnt models to generate configurations
with a larger number of blocks (up to 10) than those in the
training set. The results can be found in Figure 2.

The experiment shows that LMT is able to solve the stair-
way construction problem, and can learn appropriate mod-
els for all stairway types, as expected. Some imperfections
can be seen when the training set is too small (e.g., only
two training examples; first row of each table), but already
with four training examples the model is able to generate
perfect 10-block stairways of the given type, for all types.

4. Conclusions
Albeit simple, the stairway application showcases the abil-
ity of LMT to handle learning in hybrid Boolean-numerical
domains characterized by complex combinations of hard
and soft constraints, whereas other formalisms are not
suited for the task2.The application is a simple instance

2The stairway problem can be easily encoded in the Chuch
probabilistic programming language. However, the sampling
strategies used for inference are not conceived for performing op-
timization with hard continuous constraints. Even the simple task
of generating two blocks, conditioned on the fact that they form
a step, is prohibitively expensive. A more comprehensive discus-
sion on alternative approaches and their limitations can be found
in the journal version of this work.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Constructive Learning Modulo Theories

train. # output blocks
blocks 3 6 7 8 9 10 3 6 7 8 9 10

Results for “ladder” stairways (left and right)

2 to 3

2 to 4

2 to 5

2 to 6

Results for “vertical pillar” stairways (left and right)

2 to 3

2 to 4

2 to 5

2 to 6

Results for “horizontal pillar” stairways (left and right)

2 to 3

2 to 4

2 to 5

2 to 6

Figure 2. Results for the stairway construction problem. From
top to bottom: results for the ladder, horizontal pillar, and ver-
tical pillar cases. Number of blocks in training and generated
images are reported in rows and columns respectively.

of a layout problem, where the task is to find an optimal
layout subject to a set of constraints. Automated or in-
teractive layout synthesis has a broad range of potential
applications, including urban pattern layout (Yang et al.,
2013), decorative mosaics (Hausner, 2001) and furniture
arrangement (Yu et al., 2011). Note that many spatial con-
straints can be encoded in terms of relationships between
blocks (Yu et al., 2011). Existing approaches typically
design an energy function to be minimized by stochastic
search. Our approach suggests how to automatically iden-
tify the relevant constraints and their respective weights,
and can accomodate hard constraints and exact search. This
is especially relevant for water-tight layouts (Peng et al.,
2014), where the whole space needs to be filled (i.e. no
gaps or overlaps) by deforming basic elements from a pre-
determined set of templates (as in residential building lay-
out (Merrell et al., 2010)). Generally speaking, the LMT
framework allows to introduce a learning stage in all ap-
plication domains where SMT and OMT approaches have
shown their potential, ranging, e.g., from engineering of
chemical reactions (Fagerberg et al., 2012) to synthetic bi-
ology (Yordanov et al., 2013).

References
Barrett, C., Sebastiani, R., Seshia, S. A., and Tinelli, C.

Satisfiability modulo theories. In Handbook of Satisfia-
bility, chapter 26, pp. 825–885. IOS Press, 2009.

Choi, Jaesik and Amir, Eyal. Lifted relational variational
inference. In UAI’12, pp. 196–206, 2012.

Fagerberg, R., Flamm, C., Merkle, D., and Peters, P. Ex-
ploring chemistry using smt. In CP’12, pp. 900–915,
2012.

Goodman, Noah D., Mansinghka, Vikash K., Roy,
Daniel M., Bonawitz, Keith, and Tenenbaum, Joshua B.
Church: a language for generative models. In UAI, pp.
220–229, 2008.

Gutmann, B., Jaeger, M., and De Raedt, L. Extend-
ing problog with continuous distributions. In Inductive
Logic Programming, volume 6489, pp. 76–91. 2011.

Hausner, Alejo. Simulating decorative mosaics. In SIG-
GRAPH ’01, pp. 573–580, 2001.

Islam, M. A., Ramakrishnan, C. R., and Ramakrishnan,
I. V. Inference in probabilistic logic programs with con-
tinuous random variables. Theory Pract. Log. Program.,
12(4-5):505–523, September 2012. ISSN 1471-0684.

Merrell, Paul, Schkufza, Eric, and Koltun, Vladlen.
Computer-generated residential building layouts. ACM
Trans. Graph., 29(6):181:1–181:12, December 2010.

Närman, P., Buschle, M., König, J., and Johnson, P. Hybrid
probabilistic relational models for system quality analy-
sis. In EDOC, pp. 57–66. IEEE Computer Society, 2010.

Peng, Chi-Han, Yang, Yong-Liang, and Wonka, Peter.
Computing layouts with deformable templates. ACM
Trans. Graph., 33(4):99:1–99:11, July 2014.

Sebastiani, Roberto and Tomasi, Silvia. Optimization Mod-
ulo Theories with Linear Rational Costs. ACM Transac-
tions on Computational Logics, 16, 2015.

Tsochantaridis, Ioannis, Joachims, Thorsten, Hofmann,
Thomas, and Altun, Yasemin. Large margin methods for
structured and interdependent output variables. J. Mach.
Learn. Res., 6:1453–1484, December 2005.

Wang, Jue and Domingos, Pedro. Hybrid markov logic
networks. In AAAI’08, pp. 1106–1111, 2008.

Yang, Yong-Liang, Wang, Jun, Vouga, Etienne, and
Wonka, Peter. Urban pattern: Layout design by hier-
archical domain splitting. ACM Trans. Graph., 32(6):
181:1–181:12, November 2013.

Yordanov, Boyan, Wintersteiger, Christoph M., Hamadi,
Youssef, and Kugler, Hillel. Smt-based analysis of bi-
ological computation. In NASA Formal Methods Sympo-
sium 2013, pp. 78–92, May 2013.

Yu, Lap-Fai, Yeung, Sai-Kit, Tang, Chi-Keung, Terzopou-
los, Demetri, Chan, Tony F., and Osher, Stanley J. Make
it home: Automatic optimization of furniture arrange-
ment. ACM Trans. Graph., 30(4):86:1–86:12, July 2011.

