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Abstract
Temporal graphs are structures which model relational data between entities that
change over time. Due to the complex structure of data, mining statistically signifi-
cant temporal subgraphs, also known as temporal motifs, is a challenging task. In this
work, we present an efficient technique for extracting temporal motifs in temporal
networks. Our method is based on the novel notion of egocentric temporal neighbor-
hoods, namely multi-layer structures centered on an ego node. Each temporal layer
of the structure consists of the first-order neighborhood of the ego node, and corre-
sponding nodes in sequential layers are connected by an edge. The strength of this
approach lies in the possibility of encoding these structures into a unique bit vector,
thus bypassing the problem of graph isomorphism in searching for temporal motifs.
This allows our algorithm to mine substantially larger motifs with respect to alterna-
tive approaches. Furthermore, by bringing the focus on the temporal dynamics of the
interactions of a specific node, our model allows to mine temporal motifs which are
visibly interpretable. Experiments on a number of complex networks of social interac-
tions confirm the advantage of the proposed approach over alternative non-egocentric
solutions. The egocentric procedure is indeed more efficient in revealing similarities
and discrepancies among different social environments, independently of the differ-
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ent technologies used to collect data, which instead affect standard non-egocentric
measures.

Keywords Network motifs · Temporal networks · Graph mining · Social interaction
networks · Sociopatterns

1 Introduction

Complex networks play a pivotal role in describing and analyzing complex sys-
tems in multiple natural and artificial scenarios, representing a fundamental tool
for modeling biological, cognitive and social systems (Newman 2010). Interest-
ingly, the small substructures that compose the complex topology of a network
are sometimes recurrently emerging as essential constituents for the specific net-
work at hand. They consist in sub-networks composed by a small number of
nodes with a specific structure of connections. The substructures which are iden-
tified as the most significant take the name of motifs (Milo et al. 2002; Alon
2007). The significance of each specific substructure within the overall network
architecture is assessed in relation to its frequency and usually referring to a
null model: a structure is considered a motif if the number of its occurrences in
the network is substantially higher than the number of occurrences in the null
model.

The identification of specific repeated motifs offers a unique opportunity to
investigate the complex and intricate dynamics of human behavior and interac-
tions (Wasserman and Faust 1994;Milgram 1967). As amatter of fact, when analyzing
social dynamics we usually need to deal with time-dependent structures (Kossinets
and Watts 2006; Kossinets et al. 2008). Social interactions are indeed characterized
by links which appear and disappear in time and are associated with variable dura-
tion. The appropriate topological tool to describe systems of dynamical interactions
is represented by temporal networks with a fixed set of nodes connected by edges
that vary over time (Holme and Saramaki 2012). In such framework the identifica-
tion of motifs becomes more challenging, since a substructure can be repeated both
in time and in space. A vast literature addresses the definition of temporal motifs
and the ways to identify them (Jazayeri and Yang 2020; Kovanen et al. 2011; Ray
et al. 2014; Zhao et al. 2010; Gurukar et al. 2015; Nicosia et al. 2013; Kosyfaki
et al. 2018; Jin et al. 2007). Inspired by the work of Paranjape et al. (2017), the
aim of this paper is to further extend the concept of temporal motifs going beyond
the traditional point of view. The standard approach is indeed based on observing
temporal networks from the outside and decomposing them in their small compo-
nents. The idea of our approach is instead to jump inside the network and follow
the path of a specific node, finding node-dependent spatio-temporal patterns. In par-
ticular, for each node we observe its neighbors and how its connections to them
change in a given period of time. We neglect the connections among neighbors
of the chosen “ego" node, and we only focus on studying how the set of neigh-
bors evolves in time, following an ego perspective. In social settings this allows
to identify the patterns of interactions of individuals, selecting the most relevant
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Fig. 1 Graphical summary of the procedure for extracting egocentric temporal motifs. The left panel shows
the egocentric temporal neighborhood of the ego node E (in green), with temporal order two and initial
time instant zero. Black edges connect the central node with its neighbors (in red) at each time step, while
green (resp. red) edges connect consecutive occurrences of the central (resp. a neighboring) node along the
time sequence. The right panel shows how the corresponding egocentric temporal neighborhood signature
(ETNS) is computed. Each neighboring node is encoded into a bit vector indicating the time slots when
it is present. The node encodings are lexicographically sorted first and then concatenated to generate the
signature

behaviors as those which are most repeated in time by the same or different per-
sons. We give to these ones the name of egocentric temporal motifs (ETM). The ego
perspective allows to address the motif identification procedure very efficiently by
comparing egocentric temporal sub-networks in terms of their signature, simply con-
sisting of a bit vector. This represents a huge simplification with respect to mining
standard motifs, which necessarily requires to address the graph isomorphism prob-
lem, which slows down the procedure and makes it hard to identify graph motifs with
more than a handful of nodes. A graphical summary of our approach is shown in
Fig. 1.

We conducted an extensive experimental evaluation applying our mining algorithm
to a number of diverse interaction datasets. First, we analyzed a set of close proximity
interaction networks, including three high schools, a hospital, a research institute, a
primary school and a university campus. Qualitative results indicate that, as compared
to non-egocentric alternatives, egocentric temporal motifs are more intuitive and rep-
resentative of the differences between these environments and the categories of the
underlying egos. Quantitative results show that a metric based on egocentric temporal
motifs is more effective than existing micro-scale, meso-scale and global-scale alter-
natives in discriminating between different types of graphs. Second, we studied the
ability of egocentric temporalmotifs to discriminate distance communication networks
based on the technology employed (phone calls, sms or emails) and to distinguish dif-
ferent types of synthetic networks (i.e., temporal variants of Erdős-Rényi, scale-free
and small-world networks). Results confirm the effectiveness and generality of the
egocentric perspective in characterizing a wide range of interactions and highlight the
conditions under which this perspective can be limiting.
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2 Related work

In the last years, a number of solutions has been developed to mine motifs in tempo-
ral networks (see Jazayeri and Yang 2020 for a survey). In this manuscript we focus
on temporal networks where nodes are fixed and edges can change over time. Cur-
rently, two popular strategies have been followed to adapt graph mining approaches
to deal with a changing network topology. The first strategy (Araujo et al. 2014;
Dunlavy et al. 2011; Tantipathananandh et al. 2007) consists of aggregating tem-
poral information, i.e., building a static network containing all connections in the
temporal graph regardless of the time associated to them. While this simple strat-
egy allows to use standard techniques for motifs discovery, it loses the ability to
capture the temporal dynamics of the interactions between nodes. The second one
consists in building a growing network, where nodes and edges can be added but
never deleted (Ray et al. 2014; Leskovec et al. 2007). However these approaches are
not appropriate to deal with data containing social interactions which are necessarily
transient.

Most methods for mining motifs of transient interactions have been developed in
the field of communication networks. Kovanen et al. (2011) define the concept ofΔt −
connected graph as the connected temporal graph containing edges within a temporal
gap Δt , and search for temporal motifs inside them. Zhao et al. (2010) extended this
concept to communication motifs, basically requiring a number of occurrences greater
than a given threshold. Later, Gurukar et al. (2015) proposed COMMIT, an algorithm
that converts connected temporal subgraphs in sequences using graph invariants and
thenmines frequent sub-sequences as communicationmotifs.More recently, Kosyfaki
et al. (2018) proposed a new definition of max-flow communication motifs, in which
flow refers to data (e.g., money, messages, etc.). Hulovatyy et al. (2015) introduced
dynamic graphlets, which extend the concept of graphlets from static networks to
temporal graphs . However they do not search for temporal motifs, but rather use all
dynamic graphlets (up to a given complexity) to generate vectorial representations of
the network and its nodes. A related line of research aims at characterizing temporal
networks in terms of dense subgraphs (Kostakis et al. 2017; Rozenshtein et al. 2017,
2020). Finally, Paranjape et al. (2017) propose a mining strategy that extracts static
motifs from the aggregate network (obtained collapsing all the temporal layers together
and thus dropping the temporal information) and expands them into temporal motifs
by considering the order of appearance of edges within a given temporal gap. Other
studies investigated approximate methods for counting temporal motifs (Liu et al.
2019; Wang et al. 2020).
None of these approaches tries to capture the temporal evolution of the interac-
tions of a single node, which is the focus of our work. The egocentric perspective
allows to extract meaningful patterns of interaction that are hard to find with
non-egocentric solutions. Additionally, it allows to devise an efficient procedure
to compare these types of patterns that can substantially speed up the mining
process.
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Fig. 2 The left panel shows a temporal graph G focused on a node E . The middle panel shows three graph
snapshots, and the right panel shows a k = 2 order ETN for E built from the sequence of its egocentric
neighborhoods

3 Mathematical background

Definition 1 (Graph) A graph G can be defined as a pair (V , E), where V is a set of
vertices or nodes, and E is a set of edges between the nodes, i.e., E ⊆ {(u, v)|u, v ∈
V }.
Definition 2 (Graph isomorphism) Two graphs G = (V , E) and G ′ = (V ′, E ′) are
said to be isomorphic if and only if there exists a bijection π between their vertex sets
such that for all (u, v) ∈ E it holds that (π(u), π(v)) ∈ E ′ (edge-preservation). Graph
isomorphism is denoted as G � G ′.

Definition 3 (Node neighborhood) Given a graph G = (V , E), the neighbors of a
node v ∈ V are the set of nodes adjacent to u, i.e., N (v) = {u ∈ V |(u, v) ∈ E}. The
node neighborhood is the subgraph of G containing v and its neighbors as nodes and
all edges connecting them as edges.

As previously stated, network motifs are patterns of connections occurring on a
given network significantly more often than in random networks (Milo et al. 2002).
The next definition formalizes the concept.

Definition 4 (Network motif ) Given a graph G and a set of n random graphs G0,
a sub-graph M of G is a network motif if and only if: (i) Pr(N̄G0 > NG) < α

(over-representation); (i i) NG − N̄G0 ≥ β N̄G0 (minimum deviation); (i i i) NG ≥ γ

(minimum frequency). Here NG is the number of occurrences of sub-graph M in G,
N̄G0 is the average number of occurrences of sub-graph M in the random graphs (G0)
and α ∈ [0, 1], β ∈ [0, 1] and γ ∈ N are parameters.

The over-representation condition requires that the probability of observing amotif
in the random graphs more than in the original one is lower than a certain threshold
α. Minimum deviation instead prevents the detection as motifs of subgraphs with a
slight difference in occurrences between the graph under investigation and the ran-
dom graphs. Finally, minimum frequency avoids detecting statistically significant but
infrequent motifs.

Definition 5 (Temporal graph) A temporal graph G = (V , E) is a pair of sets where V
is a set of vertices or nodes and E is a set of temporal edges, i.e., edges enriched with
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Fig. 3 Examples of ETN and ETNS for different temporal graphs with k = 2. The two highlighted ETNS
are identical and correspond to isomorphic ETN

temporal information. Each temporal edge e ∈ E is a quadruple (u, v, tstart , tend),
where u and v are nodes (u, v ∈ V ) and tstart and tend are time instants representing,
respectively, the beginning and the end of the interaction between node u and node v.
Given a temporal graph G, its corresponding (static) aggregate graph G is obtained
removing temporal information from the edges of G.
Definition 6 (Temporal graph snapshot) Given a temporal graph G = (V , E) and a
temporal gap Δt , a temporal graph snapshot at time t is a static graph Gt = (Vt , Et )

such that Vt = V and there is a static edge (u, v) ∈ Et if and only if the corresponding
temporal interaction (u, v, tstart , tend) ∈ E exists within Δt , i.e. tstart ∈ [t, t +Δt)∨
tend ∈ [t, t + Δt).

A temporal graph G = (V , E) can be represented as a sequence of temporal graph
snapshots Gt1 , Gt2 , ..., Gtm where t1 is the smallest tstart in E , ti+1 = ti + Δt and tm
is smaller than the largest tend in E .

4 Mining egocentric temporal motifs

Let us start by introducing the notions of egocentric neighborhood and egocentric
temporal neighborhood.

Definition 7 (Egocentric neighborhood) Given a (static) graph G = (V , E) and a
node v ∈ V , the egocentric neighborhood of v is the subgraph G(v) obtained by
taking the neighborhood of v and removing all edges not including v as one of the
nodes.

Note that this simple variant of the node neighborhood focuses the attention on the
central node, dropping all information not related to it. We next show how to extend
this egocentric focus to the temporal aspect, by following the temporal evolution of
the node neighborhood.
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Definition 8 (Egocentric temporal neighborhood – ETN) Given a temporal graph
G = (V , E), a temporal gap Δt , a temporal neighborhood order k and a node
v ∈ V , the egocentric temporal neighborhood of v is defined as follows. Let
Gt1 , Gt2 , ..., Gtm be the sequence of temporal graphs’ snapshots for G with gap Δt .
Let Gt1(v), Gt2(v), . . . , Gtm (v) be the sequence of egocentric neighborhoods of v for
such temporal graph snapshots. The k-th order egocentric temporal neighborhood of
v at time ti is a graph obtained taking Gti (v), . . . , Gti+k (v) and connecting each node
to the next occurrence of the same node (if any) along the sequence. In addition, each
node is labelled with its position in the sequence. We refer to this graph as Gk

ti (v).

Figure 2 shows the extraction of an ETN from a temporal graph. The structure of
ETNgraphs allows to efficiently compute graph isomorphism via a graph signature. To
simplify the presentation of the signature generation algorithm, we assume a function
id that applied to a node in an ETN returns its identifier in the original temporal graph
G (the letters in Fig. 2).

Definition 9 (Egocentric temporal neighborhood signature (ETNS)) Given a temporal
graph G = (V , E) and an egocentric temporal neighborhood graph Gk

t (v) for node
v, time t and order k, an egocentric temporal neighborhood signature sk

t (v) is a bit
vector encoding Gk

t (v). Two egocentric temporal neighborhoods Gk
t (v) and Gk

t ′(v
′)

have the same signature if and only if they are isomorphic.

The procedure computing the ETNS for a givenETNgraph is shown inAlgorithm1.
The algorithm starts by initializing the signature s to an empty vector and collecting
all nodes of the ETN graph with distinct identifiers into a set V . Here Vt+i (v) indicates
the set of nodes in the t + i temporal slice of Gk

t (v), and the union discards duplicates
according to id. For each node u, with the exception of the central node v, the algorithm
then computes a bit vector encoding su . The encoding has length k and contains at
each position i a Boolean flag stating whether the node (represented by its identifier
id) is present in the corresponding temporal slice, i.e., u ∈ Vt+i (v). After computing
this bit vector, the algorithm appends it to s. Finally, the list of neighborhood node
signatures is sorted in lexicographic order and concatenated into the final signature.
Figure 3 shows some examples of ETN and corresponding ETNS for k = 2.

Theorem 1 (Isomorphic ETN) Given two egocentric temporal neighborhoods Gk
t (v)

and Gk
t ′(v

′), Algorithm 1 returns the same signature if and only if they are isomorphic.

Proof We first show that if two ETNs are isomorphic they have the same signature.
Let π be a bijection for the two ETNs as from Definition 2. Note that this bijection
will map central nodes to central nodes1 (they are the only ones that can have a degree
larger than one on a given temporal slice). By specifying a mapping between nodes,
π also implicitly defines a mapping between node identifiers. The edge-preserving
property of π implies that the mapping of identifiers is consistent (if two non-central
nodes share an edge they have the same identifier). It also implies that the two paired
node identifiers share the same set of edges, and thus have the same encoding. Having

1 Apart for the degenerate case consisting of a single neighbor running all along the sequence, where there
is no distinction between central node and neighbor and the proof is trivial.
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Algorithm 1 Procedure for computing the signature of an ETN graph.

procedure computeETNS(Gk
t (v))

s ← [ ]
V ←

k⋃

i=0
Vt+i (v)

for u ∈ V do
if u 	= v then

su ← [ ]
for i = 0, .., k do

if u ∈ Vt+i (v) then
append(su , 1)

else
append(su , 0)

append(s, su )
s ← sort(s)
return flatten(s)

the same encodings for each pair of node identifiers, the resulting signatures are also
the same. This concludes the first part of the proof.

We next show that if the signatures are the same the ETNs are isomorphic. We
prove this by showing how to create the bijection function π . Recall that a signature
is a flattened sorted list of encodings of node identifiers, and that all encodings have
the same length k + 1. We start by pairing node identifiers in the two graphs by their
positions in the respective signatures. We then map nodes with paired identifiers by
matching their node labels (i.e., positions in the underlying graph sequence). Given
that the node encodings of the paired identifiers are the same, the corresponding nodes
appear in the same positions in the underlying sequence (thus matching by node labels
produces a perfect match). We repeat the same matching for the only unpaired node
identifiers, which correspond to the central node. Note that by definition of ETN the
central node appears with all labels from 1 to k + 1. Being redundant we omit its
encoding from the signature. By construction, mapped nodes share the same label,
i.e., �(u) = �(π(u)) for all u. Concerning edges, by definition of ETN edges are
only between the central node and the neighbors, and between consecutive instances
of the same node along the sequence. The former requirement is easily satisfied as
each (non-central) node is always connected to the central node having the same label.
The latter is satisfied because by construction if two node identifiers have the same
encoding their corresponding nodes have the same edges (recall that central nodes
have the same encoding even if it is not part of the signature). This concludes the
proof. 
�

We are now ready to introduce the algorithm for extracting statistics on ETNs from
a temporal graph. The pseudocode of the algorithm is shown in Algorithm 2.

The algorithm takes as input a temporal graph G, a temporal gap Δt and a temporal
neighborhood order k and returns a dictionary of counts S mapping ETNs to the
number of occurrences of the corresponding ETN in G. It starts by initializing S to
the empty set and extracting the sequence of temporal graph snapshots of G for gap
Δt . For each time ti and node v (Vti is the set of nodes of graph Gti ) it builds the
corresponding ETN and computes its associated signature using Algorithm 1. The
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Algorithm 2 Procedure for extracting counts of ETN graphs from a temporal graph.
procedure countETN(G,Δt ,k)

S ← ∅
Gt1,..,tm ← ExtractSnapshots(G,Δt)
for i = 1, .., m − k do

for v ∈ Vti do
Gk

ti
(v) ← buildETN(Gti (v), . . . , Gti+k (v))

sk
ti
(v) ← computeETNS(Gk

ti
(v))

if sk
ti
(v) ∈ S then

S[sk
ti
(v)] ← S[sk

ti
(v)] + 1

else
S[sk

ti
(v)] ← 1

return S

signature is finally used to update the ETN counts in S. Note that this update step is
extremely efficient thanks to the fact that ETNs are bit vectors.

Theorem 2 (Complexity of computeETNS) The worst-case complexity of com-
puteETNS is O(d(k) log d(k)), where d(k) is the maximal degree of the network when
considering edges within a k · Δt temporal range.

Proof Building the signature requires to create an encoding of length k + 1 for each
of the nodes in Gk

ti (v) with distinct identifier, which are |V |. The complexity is thus
O(|V |). Sorting the signature requires sorting each of these encodings, which costs
O(|V | · log |V |). The worst case complexity can be obtained setting |V | = d(k), giving
O(d(k) log d(k)). 
�
Theorem 3 (Complexity of countETN) The worst-case complexity of countETN is
O(n ·m ·d(k) log d(k)), where n is the number of nodes in the network, m is the overall
number of temporal snapshots, and k and d(k) are as in Theorem 2. The number of
temporal snapshots is computed as m = (Tend − Tstart )/Δt , where Tstart and Tend

are the smallest tstart and the largest tend in the network respectively and Δt is the
temporal gap.

Proof Note first that the procedure ExtractSnapshots is introduced to simplify the
explanation, but the underlying algorithm never explicitly materializes the sequence
of temporal graph snapshots for the whole network but directly extracts the ETN
using buildETN. This latter procedure costs |Gk

t (v)|, i.e., the number of nodes in
the resulting ETN, which is upper bounded by d(k) · k. The procedure is repeated
n · (m − k) times. Computing all ETNs thus costs O(n · m · d(k) · k), and converting
them to ETNs costsO(n · m · d(k) log d(k)). The count update can be done in constant
time thanks to the fact that ETNs are bit vectors, so the overall worst-case complexity
is O(n · m · d(k) log d(k)). 
�

Note that for reasonable values of k and Δt , d(k) is independent of the size of the
network, so that the overall complexity is O(n · m).

To extract statistically significant ETN from a temporal graph G, we rely on the
support of a null model Ḡ, defined as follows (Holme and Saramaki 2012; Holme
2015; Jazayeri and Yang 2020):
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Definition 10 (Temporal Graph Null Model) Given a temporal graph G, consider the
temporal graph snapshot Gt1 , Gt2 , . . . , Gtm (Definition 6) representation of G. The
null model Ḡ of G is obtained by randomly shuffling the snapshots Gt1 , Gt2 , . . . , Gtm .

Hence a null model Ḡ is a temporal graph with the same number of nodes, the
same number of snapshots and the same number of connections between each couple
of nodes but without any temporal correlation. The procedure can be repeated an
arbitrary number of times to produce a set of null models that the original temporal
graph can be compared with.
As will be shown in the experimental evaluation, this allows to identify non-trivial
temporal structures in a much more selective way with respect to alternative non-
egocentric mining approaches.

Finally, we define the Egocentric Temporal Motifs (ETM) as follows:

Definition 11 (Egocentric Temporal Motifs (ETM)) Given a temporal graph G, n null
models Ḡ, and the parameters α (over-representation), β (minimum deviation) and γ

(minimum frequency) appearing in Definition 4, the set of ETMs for G is obtained
applying Definition 4 to G where sub-graphs are represented by the set of its ETNs
found according to Definition 8 for each of its nodes.

We name the algorithm extracting ETM from a temporal graph ETMM, standing
for Egocentric Temporal Motif Miner.

5 ETM-based graph distance

To show the importance of the egocentric perspective in networks of social interactions,
we introduce a simple metric that measures the distance between graphs in terms of
their respective ETM. To do this, we first define the ETN-based embedding of a
temporal graph.

Definition 12 (ETN-based embedding) Given a temporal graph G and a list M of
ETNs, we define E M BM (G) as the embedding of G in a vector of cardinality |M |, in
which the i th element of E M BM (G) represents the number of occurrences of M[i] in
G.

Given a list of ETN, the distance between two temporal graphs is then defined as
the distance between their respective ETN-based embeddings.

Definition 13 (ETN-based distance) Given two temporal graphs G1, G2 and a list M
of ETNs, we define distM (G1,G2) as the cosine distance between the ETN-based
embeddings of G1 and G2:

distM (G1,G2) = 1 − E M BM (G1) · E M BM (G2)
||E M BM (G1)|| ||E M BM (G2)|| (1)

where · is the dot product and || · || is the Euclidean norm.

The distance between two temporal graphs can now be computed by first extracting
their respective lists of ETM, finding the set of ETM shared by the two graphs and
computing their ETN-based distance using this set.
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Definition 14 (ETM-based distance) Given two temporal graphs G1, G2, two corre-
sponding sets of n null models Ḡ1 and Ḡ2 and three parameters α, β and γ , we define
dist(G1,G2) as:

dist(G1,G2) = distM1,2(G1,G2) (2)

where M1,2 = M1 ∩ M2 and M1 (resp. M2) is the list of ETM obtained applying
Definition 11 to G1 (resp. G2).

6 Experimental setup

In the following we describe the different groups of network datasets we employed in
our experiments and the non-egocentric miners and graph distances that we used as
competitors.

6.1 Close proximity interaction datasets

The first group of datasets focuses on close proximity interactions, and contains three
high school datasets, a work place, a hospital, a primary school and a university
campus (DTU). All datasets except the university campus have been collected using
the wearable sensors developed by the SocioPatterns2 collaboration, equipped with
radio-frequency identification devices (RFIDs) capturing face-to-face interactions.
The devices record an interaction if and only if there is at least one exchanged
signal within 20 seconds, so 20 seconds the smallest time resolution. The DTU
dataset (Sapiezynski et al. 2019) instead represents proximity interactions among uni-
versity students, collected over a month using Bluetooth technology to infer physical
co-location. The datasets are briefly described in the following.

HighSchool11 (Fournet and Barrat 2014). The dataset has been collected in 2011 in
Lycée Thiers, Marseilles, France, over four days (Tuesday to Friday). It reports the
interactions among 118 students and 8 teachers in three different high school classes.
Number of edges: 1709, number of nodes: 126.

HighSchool12 (Fournet and Barrat 2014). The dataset has been collected in 2012
in Lycée Thiers, Marseilles, France, over seven days (Monday to Tuesday of the
following week). It reports the interactions among 180 students in five different high
school classes. Number of edges: 2220, number of nodes: 180.

HighSchool13 (Mastrandrea et al. 2015). The dataset has been collected in 2013 in
LycéeThiers,Marseilles, France, over five days inDecember. It reports the interactions
among 327 students in nine different high school classes. Number of edges: 5818,
number of nodes: 327.

InVS13 (Génois et al. 2015). The dataset has been collected in 2013 at the Institut
National de Veille Sanitaire, a health research institute near Paris, over two weeks.

2 http://www.sociopatterns.org/.
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The dataset contains 92 individuals divided in five departments: DISQ, DMCT, SFLE,
DSE and SRH. Number of edges: 755, number of nodes: 92.

LH10 (Vanhems et al. 2013). The dataset has been collected in the geriatric ward of a
university hospital (Vanhems et al. 2011) in Lyon, France, over four days in December
2010. The individuals belong to four classes: medical doctors (MED), paramedical
staff (NUR), administrative staff (ADM) and patients (PAT). Number of edges: 1139,
number of nodes: 75.

Primary school (Stehlé et al. 2011). The dataset has been collected in a primary
school in France, over two days in October 2009. The individuals belong to two
classes: teachers (10 individuals) and children (232 individuals). Number of edges:
8317, number of nodes: 242.

DTU (Sapiezynski et al. 2019). The dataset represents the interactions among univer-
sity freshmen students in the Copenhagen University. In particular, DTU represents
the network of interactions among students collected over a month using Bluetooth
technology to infer physical proximity. Number of edges: 79530, number of nodes:
692.

6.2 Distance communication datasets

The second group of datasets contains distance interactions with different commu-
nication technologies, namely phone calls, SMSs and emails. The idea is to check
whether ETMs are capable of distinguishing graphs according to the underlying com-
munication technology. The datasets are briefly described in the following.

DTU calls (Sapiezynski et al. 2019). The dataset represents phone calls among univer-
sity freshmen students in the Copenhagen University. Number of edges: 605, number
of nodes: 525.

Friends and Family calls (Aharony et al. 2011). The dataset represents phone calls
among members of a young-family residential living community adjacent to a major
research university in North America. Number of edges: 432, number of nodes: 129.

DTU SMS (Sapiezynski et al. 2019). The dataset represents SMSs among university
freshmen students in the Copenhagen University. Number of edges: 697, number of
nodes: 568.

Friends and Family SMS (Aharony et al. 2011). The dataset represents SMSs among
members of a young-family residential living community adjacent to a major research
university in North America. Number of edges: 153, number of nodes: 85.

Email EU (Paranjape et al. 2017). The dataset is a collection of emails between mem-
bers of a European research institution. Number of edges: 16064, number of nodes:
986.

Email DNC (Rossi and Ahmed 2015). The dataset is a collection of leaked emails
between members of the 2016 Democratic National Committee. Number of edges:
16064, number of nodes: 986.
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Table 1 Synthetic temporal graphs parameters

Name # nodes # edges Time stamps

Erdos Renyi (p = 0.01) 64 1610 301

Erdos Renyi (p = 0.001) 13 78 301

Scale Free (G1) 100 2748 301

Scale Free (G2) 100 3524 301

Small World (p = 2) 100 4581 301

Small World (p = 8) 100 4340 301

6.3 Synthetic datasets

The last groupof datasets consists in synthetic temporal networks, and aims at checking
whether ETMs retain information concerning (temporal variants of) popular network
topologies. Each network is built as a temporal graph where the first timestamp is a
static synthetic network suitably generated, while the following temporal layers are
recursively generated imposing a fixed correlation with the previous ones. In details,
the timestamp n + 1 is obtained by randomly swapping a fixed fraction f of couples
of edges present in the network at timestamp n. In this way the temporal network that
we obtain is characterized by a realistic temporal correlation between timestamps and
each static network has the same degree distribution.We chose f = 0.3 andwe used as
initial static networks six different graphs: two Erdős-Rényi Erdős and Rényi (1960)
networks (with p = 0.01 and p = 0.001), two scale-free networks (Barabási and
Albert 1999) (with the same parameters α = 0.41, β = 0.54, γ = 0.05, δin = 0.2,
δout = 0 of the algorithm described in Bollobás et al. (2003) but with two different
random seeds), and two small-world networks (Watts and Strogatz 1998) (with p = 2
and p = 8, but k = 3 for both). Table 1 shows the parameters of the generated graphs.

6.4 Non-egocentric miners

As previously stated, no alternative approaches exist that focus on mining egocentric
temporal motifs. However, to provide some comparative evaluation for the results of
our mining algorithm, we also ran the state of the art non-egocentric temporal motif
mining algorithmbyParanjape et al. (2017). Note however that themotifs found by this
method are prototypical of what any non-egocentric mining approach can produce. As
mentioned in the related work, the method can be described as follows: (i) obtain the
aggregate graph of the input temporal graph (see Definition 5); (ii) extract (static) n-
node l-edges motifs, where n is the number of nodes in the motif and l is the number of
edges (parameters of the algorithm), using standard approaches for determiningmotifs
(where the null models have the same aggregate degree distribution of the input graph);
and (iii) for each static motif count its isomorphic sub-graphs on the temporal network,
i.e. with edges possibly appearing at different times. If the maximum distance in time
among the different edges is less than a given time δ, the sub-graph is denoted as a
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temporal motif. In the following, we refer to the Paranjape et al. (2017) method as
TMM.

6.5 Non-egocentric graph distances

In this subsection, we present four distances based on micro-scale, meso-scale and
global features of the temporal graph.

NetSimile: Berlingerio et al. (2012) developed NetSimile, a tool for network distance.
This method relies on a set of seven features of the network’s nodes. Such features
are: degree of the nodes, clustering coefficient, average number or nodes in two-hop
neighborhood, average clustering coefficients of the neighbors of a node, number
of edges in the node egonet (induced sub-graph of node and neighbors), number of
outgoing edges and number of neighbors of the ego. First, the median, mean, standard
deviation, skewness, and kurtosis are computed for each feature, producing a graph
embedding of 7× 5 = 35 elements. Then, the distance among graphs is computed as
the Canberra distance between their respective embeddings.

To apply such method to the aforementioned datasets, we compute the aggregated
network, that is, the network obtained by removing the temporal dimension in the
input data and the duplicated edges.

Modified NetSimile:NetSimile is not originally conceived for temporal graphs.We thus
considered a variant of the method that includes the number of temporal interactions
of a node as an additional feature over which to compute the statistics, thus producing
an embedding of dimension 40.

Weighted Laplacian:While previous distances rely on local features of the input graph,
the Weighted Laplacian leverages global features. First of all, a weighted aggregated
static graph is created, in which the weights on an edge represent the number of
interactions (over time) that the edge has had. Then the Laplacian matrix is defined as
L = D − W , where D is the degree matrix and W is the matrix of edge weights.

To compute the distance among two temporal graphs G1 and G2, we calculate the
Laplacian matrices L1 and L2, then we set k equal to the minimum number of nodes
between G1 and G2, and finally we compute the Euclidean distance between the first
k eigenvalues of L1 and L2.

Temporal motifs: To compute the distance between networks using meso-scale fea-
tures, we considered a distance induced by (non-egocentric) temporal motifs. This is
achieved by applying a variant of Definition 14 that uses temporal motifs as discussed
in Sect. 6.4 in place of ETM.

7 Results

We start by showing qualitative results in which we compare egocentric and non-
egocentric motifs, and then report a quantitative analysis of the effectiveness of our
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Fig. 4 Most frequent temporal motifs discovered by TMM on the seven networks for Δt = 300

ETM-based graph distance as compared to alternative non-egocentric graph distance
measures.

7.1 Egocentric versus non-egocentric temporal motifs

We compare motifs found by our ETMM with those generated by TMM. We set the
number of temporal steps k = 2 for ETMM, while for TMM we consider 3-nodes
and 3-edges structures. These values allow to generate non-trivial motifs and to find a
significant amount of them in each dataset. As will be clear in the next, the difference
between the methods is evident and does not depend on the specific choice for these
parameters.Note that ETMM does not require to set the number of nodes and edges and
it can in principle extractmotifswith an arbitrary number of neighbors. FollowingMilo
et al. (2002) we set the number of null models n = 100, with parameters α = 0.01,
β = 0.1 and γ = 5.

To give an insight of the main differences between egocentric and non-egocentric
motifs and highlight the usefulness of the former in discovering patterns of social
interaction, we report the five most frequent motifs found by the different methods.
We focus on a temporal gap Δt = 300 s, but results are quite similar for different
temporal gaps.

Figure 4 shows the first fivemotifs found byTMM on the different datasets, ordered
by frequency. These motifs show some dynamics in the interaction, but it is difficult to
interpret them in terms of social interaction patterns or to identify some clear features
that distinguish the various datasets.Moreover, Fig. 4 shows that the fivemost frequent
motifs are the same for all the datasets, with the only exception of the fifth motifs of
InVS13 and LH10.

The five most frequent motifs discovered by our method are reported in Fig. 5.
Note that the egocentric focus allows to generate motifs which are quite interpretable
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Fig. 5 Most frequent egocentric temporal motifs discovered by ETMM on the three datasets for Δt = 300

in terms of social interactions of the person under investigation (the ego). For instance,
for HighSchool11 (first line) we identify a continuous interaction with another person
(a) (c) (e), possibly combined with a third person joining at the beginning (e) or at the
end (c) of the interaction.

Concerning the other datasets, even if the first two ETMs are the same (except for
the DTU dataset), our approach does identify some differences that can be related to
the different type of networks under investigation. For example, our method is able
to identify motifs characterized by rich and dynamic interactions among students in
high school and university, and by sparse and short interactions among employees in
the research institute. The last line of Fig. 5 shows the motifs found by ETMM on the
DTU dataset, and it is easy to see that the structures of the discovered motifs are quite
different and more complex with respect to the structures of the motifs found in the
other datasets. This may also depend on the fact that the DTU dataset, collected using
Bluetooth technology, captures co-location and not face-to-face interactions.

Toprovide further insights on the relationship betweenmotifs and types of networks,
we looked for the set of temporal motifs that most discriminates among different
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Fig. 6 The figure shows the frequencies of three ETM for each dataset. The ETMs are those with the
maximum variance among datasets

datasets. We selected the three egocentric temporal motifs with maximum variance of
occurrence among the datasets, and report their frequencies in Fig. 6. The difference
between the primary school and the other datasets is striking. The former contains a
motif that is totally missing in the other networks, namely the case where an individual
briefly interacts with another one (for less than 5minutes) and has nomore interactions
in the following 20minutes. This small set ofmotifsmay seem a poor description of the
analyzed social settings. However, it is surprisingly accurate in catching differences
and similarities among datasets, as we will see in next section.

7.2 Egocentric versus non-egocentric graph distances

To give some quantitative estimate of the descriptiveness of the motifs found by our
method, we study their effectiveness in measuring the distance among the networks
described in Sect. 6. In particular,we show the importance of the egocentric perspective
in identifying similar social contexts by means of network distances (Definition 14).

Figure 7 shows the distances computed with the four non-egocentric methods
reported in Sect. 6.5 (first two rows) andwith our ETM-based distance (last row). Each
table reports the pairwise distances between networks and each element is coloredwith
a color scale starting from green (minimum distance) to red (maximum distance). The
figure clearly shows that all non-egocentric methods have serious problems in pro-
ducing meaningful distances between interaction networks. First, all of them consider
DTU to be the farthest away from all other networks. However, we expect that DTU
network, which collects the co-location behaviors of university students, should show
some similarities with the ones capturing the face-to-face interactions of high school
students, namely HighSchool11, HighSchool12 and HighSchool13. These similarities
seem not adequately detected by these methods. As previously anticipated, the fact
that DTU results appear so different from those obtained with the other datasets may
depend on the fact that different technologies (RFID vs Bluetooth) have been used
to collect the data, suggesting that non-egocentric approaches fail in revealing social
patterns when different technologies are at place. We also notice that both NetSim-
ile and Modified NetSimile (first row) detect hospital (LH10) as the closest network
to primary school; this appears as an unexpected result, considering the differences
between these two social contexts. Moreover, the Weighted Laplacian method (first
table second row) fails in identifying similar environments, since we observe that
InVS13 is very close to HighSchool11 but quite distant from HighSchoo13. Finally,
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Fig. 7 Distances among networks using five different methods, namely: NetSimile, Modified NetSimile,
Weighted Laplacian, Temporal motifs and ETM-based distance. Each element of the table is colored in a
color scale from green (minimum distance) to red (maximum distance). The last tables show the distances
obtained using ETM-based distance using Δt = 300 and k = 4, with all motifs (left) and the three most
discriminative ones (right)

according to (non-egocentric) temporal motifs (second table second row) the network
LH10 is very close to almost all datasets, being almost identical to HighSchool13.

The last row of Fig. 7 shows the results of our ETM-based distance (for Δt =
300 and k = 4), using all ETMs (left) and only the three most discriminative ones
(right), i.e., thosemaximizing the variance of ETM frequencies among datasets (shown
in Fig. 6). The reported network distances provide a more satisfactory description
of the similarity between the underlying datasets. First of all, the three high school
networks are very close to each other, with distances around 0, while presenting larger
distances with all other networks. Moreover, among the other networks, the closest
one is represented by the one capturing the co-location behavior of university students
(DTU),which are expected to share somebehavioral routineswith high school students
(e.g., class attendance). This shows that ETM is capable of finding similar social
interaction patterns despite the use of different data collection technologies, something
alternative non-egocentric measures completely fail to achieve. The network which is
farthest away from all the others is the primary school network: this may be explained
by the fact that primary school children seem to experience interaction dynamics
which are significantly different from the ones characterizing the social settings of
young adults and adults. Finally, we observe that another sensible niche is represented
by the two working places, namely the hospital and the research institute, quite similar
between each other and quite distinct from all other settings. Interestingly, limiting
the set of ETMs to the three most discriminative ones produces results which are very
similar to those obtained with the full set of motifs (around six thousands). This is a
surprising result and a confirmation of the effectiveness of the egocentric perspective
in characterizing different types of social interaction settings.
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Fig. 8 ETM-based distances obtained using Δt = 300, 900 and k = 3, 4 and 5

7.3 Sensitivity analysis

In the following we provide a sensitivity analysis showing how the choice of the
parameters, namely the temporal gap Δt and the temporal neighborhood order k,
affect the ETM-based distance. In Fig. 8 we report the ETM-based distance among
datasets using Δt equal to 300 and 900 s,3 and k ranging from 3 to 5. We observe
that results are quite stable. For intermediate values of the parameters, results are
very similar to those presented for Δt = 300 and k = 4, with distances that tend
to increase for increasing values of Δt and k. Intuitively, small values of both Δt
and k (i.e., Δt = 300 and k = 3, top left matrix) produce small motifs, leading to a
partial reduction in discriminative capacity, with the primary school becoming (more)
similar to workplaces and high schools. On the other side, large values of both Δt and
k (i.e., Δt = 900 and k = 5, bottom right matrix) determine a slight decrease in the
capacity of detecting similarities among related datasets (namely between different
high schools). This is again not surprising, as jointly increasingΔt and k substantially
increases the required length for a temporal fragment to match a motif, making it more
complex for the method to mine relevant motifs.

7.4 Results on distance communication and synthetic datasets

In this section we evaluate the ability of the ETM-based distance to characterize
networks beyond close proximity interaction data. First of all we consider other typolo-

3 A value ofΔt < 300 generates a too sparse network for the DTU dataset that relies on Bluetooth to detect
interactions, preventing the discovery of non-trivial motifs by any method. Results for the other datasets
are similar for values of Δt as small as 60.
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Fig. 9 Distances amongdifferent communication networks usingfive differentmethods, namely:NetSimile,
Modified NetSimile, Weighted Laplacian, Temporal motifs and ETM-based distance. Each element of the
table is colored in a color scale from green (minimum distance) to red (maximum distance). The last table
shows the distances obtained using ETM-based distance with Δt = 3600 and k = 4

gies of social data representing distance communication interactions (Fig. 9), then we
explore the algorithm performance on synthetic temporal graphs (Fig. 10).

The non-physical interaction datasets that we consider employ different communi-
cation technologies (phone calls, SMSs and emails, see Sect. 6.2). For this experiment,
we choose k = 4 and Δt = 3600, a temporal gap for which the six temporal net-
works are characterized by a similar average degree (equal to 0.052 for phone calls,
0.049 for SMSs and 0.051 for emails). Results are shown in Fig. 9. Non-egocentric
methods manage to capture the similarity among some of the networks using the same
technology (e.g., SMSs for NetSimile and Modified NetSimile, emails for temporal
motifs), but they badly fail in most cases. On the other hand, the ETM-based distance
is quite consistent in capturing the similarity between networks employing the same
communication technology. Moreover, networks based on SMSs and phone calls are
more similar to each other than networks based on emails, as expected. This is a further
proof of the versatility of ETM patterns to characterize temporal behaviors.

Results for the synthetic datasets are shown in Fig. 10. Our ETM-based distance is
clearly capable of detecting similarities among Erdős-Rényi graphs, outperforming all
competitors, and among scale-free ones, which are however modelled reasonably well
by all methods. On the other hand, the ETM-based distance lags behind all competitors
in detecting similarities between small-world networks. This result sheds some light on
the limitations of the egocentric perspective of our method. Indeed, ETMs deliberately
discard the information on connections among neighbors of the ego node (we only
consider the existence of neighbors and not their mutual behavior), thus neglecting
the clustering structure of the network. This explains why the synthetic small-world
networks, characterized by high values of clustering coefficient, are less effectively
described by our method.
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Fig. 10 Distances among different synthetic networks using five different methods, namely: NetSimile,
Modified NetSimile, Weighted Laplacian, Temporal motifs and ETM-based distance. Each element of the
table is colored in a color scale from green (minimum distance) to red (maximum distance). The last table
shows the distances obtained using ETM-based distance with k = 4. No temporal gap is needed in this case,
as the networks are not extracted from time series but synthetically generated according to the procedure
described in Sect. 6.3

8 Conclusion

In this manuscript we proposed a novel approach for mining temporal motifs based
on an ego perspective. Each motif represents the evolution, during few time steps, of
the set of neighbors of a specific network node. Egocentric temporal motifs present
some essential characteristics that distinguish them from standard temporal motifs.

First of all, egocentric temporal motifs are simpler, at a topological level, with
respect to standard temporal motifs, since they only take into account the neighboring
nodes of the ego, ignoring the connections among them. This allows both to account
for larger neighborhoods and to explore more in detail the temporal aspect, including
duration of contacts and contemporary interactions, usually neglected in standard
procedures for temporalmotif mining. This is a necessary requirement when analyzing
social domains like physical human interactions, where each individual can interact
with multiple people at a time, with various durations.

Second, the egocentric view has substantial advantages from a computational per-
spective. Traditional techniques for motif mining rely on an isomorphism test for
assessing if two sub-networks are equivalent or not, and this limits their applicability
to mine motifs containing a handful of nodes. The focus on an ego node allows us to
sidestep this problem. We show how an egocentric temporal neighborhood, which is
the sub-structure representing a candidate motif, can be encoded into a bit vector in
a way such that two neighborhoods have the same encoding if and only if they are
isomorphic.
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Wemade use of seven different datasets representing social interactions and applied
our egocentric temporal motif miner, comparing the results with a state of the art non-
egocentric temporal motif miner. Our method is shown to be more effective in terms of
selectivity and quality of the extractedmotifs. By visually inspecting themost frequent
motifs found in eachdataset, it is apparent that ourmethod succeeds in grasping someof
the peculiarities of each dataset: more rich and dynamical interactions among students
in high school and university, sparser and shorter interactions for the research institute,
a combination of the two in the hospital, and a different behavior at the primary school.
Importantly, differences and similarities between datasets are quantified by defining
a correlation measure between egocentric signatures. The results that we obtain fully
reflect the social context represented by the network, especially if compared with
standard non-egocentric approaches tomeasure temporal networks’ distance. Later,we
show how the egocentric perspective is crucial for the discrimination among different
communication technologies, like phone calls, SMSs and emails, andhow it also allows
to characterize temporal variants of popular network topologies, like Erdős-Rényi and
scale-free.

The egocentric perspective surely represents an important limitation too, since we
are neglecting all the second order interactions, i.e., the interactions between neighbors
of an egonode. This is especially limiting in networkswhich are characterized by a high
clustering coefficient, as shown by the suboptimal results that we achieve on small-
world networks. On the other hand, this is a necessary requirement for the bit vector
encoding and hence for the extreme velocity of our method (which scales linearly with
the number of nodes and the timesteps of the temporal network). This allows to mine
motifs covering larger structures and longer time sequences with respect to alternative
solutions. Our extensive experimental results show that, even renouncing to represent
second-order interactions, the proposed method is able to recognize different social
settings, substantially outperforming existing alternatives.
In conclusion,we are proposing anovel efficientmethod toobtain temporalmotifs from
the node point of view. This method is not conceived to completely replace existing
temporalmotif miningmethods, but rather to complement them in revealing a different
kind of motifs. As shown in our experimental evaluation, this can be particularly
useful to study social interaction networks, which could not be properly analyzed with
existing approaches.
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