
Efficient Weighted Model Integration via SMT-Based Predicate Abstraction

Paolo Morettin, Andrea Passerini, Roberto Sebastiani
DISI, University of Trento, Italy.

paolo.morettin@unitn.it, andrea.passerini@unitn.it, roberto.sebastiani@unitn.it

Abstract

Weighted model integration (WMI) is a recent
formalism generalizing weighted model counting
(WMC) to run probabilistic inference over hybrid
domains, characterized by both discrete and con-
tinuous variables and relationships between them.
Albeit powerful, the original formulation of WMI
suffers from some theoretical limitations, and it is
computationally very demanding as it requires to
explicitly enumerate all possible models to be inte-
grated over. In this paper we present a novel general
notion of WMI, which fixes the theoretical limita-
tions and allows for exploiting the power of SMT-
based predicate abstraction techniques. A novel al-
gorithm combines a strong reduction in the num-
ber of models to be integrated over with their ef-
ficient enumeration. Experimental results on syn-
thetic and real-world data show drastic computa-
tional improvements over the original WMI formu-
lation as well as existing alternatives for hybrid in-
ference.

1 Introduction
Weighted model counting (WMC) is the task of computing
the weighted sum of all satisfying assignments of a proposi-
tional formula, where weights are associated to models and
are typically factorized into the product of weights of indi-
vidual variables. In recent years, WMC was shown to be an
effective solution for addressing probabilistic inference in a
wide spectrum of formalisms [Chavira and Darwiche, 2008;
Choi et al., 2013; Suciu et al., 2011].

An inherent limitation of WMC is that it can only deal with
discrete distributions. In order to overcome this restriction,
weighted model integration (WMI) [Belle et al., 2015] was
recently introduced as a formulation generalizing WMC to
deal with hybrid domains, characterized by both discrete and
continuous variables and their relationships. The formalism
relies on satisfiability modulo theory (SMT) [Barrett et al.,
2009] technology, which allows to reason about the satisfi-
ability of formulas involving e.g. linear constraints over in-
tegers or reals. WMI works by replacing the weighted sum
of models of a propositional formula with a sum of integrals

over weight functions defined over the models of an SMT for-
mula. Weight functions here play the role of (un-normalized)
densities, whereas logic formulas in the model define the in-
tegration domain.

In this paper, we elaborate on the notion of WMI and pro-
vide a refined formalization fixing some theoretical and prac-
tical limitations of the original definition. The novel formal-
ization guarantees that equivalent formulas have the same
WMI, and that probabilistic manipulations like marginal-
ization are always consistent. A novel notion of condi-
tional weight function allows for a more effective decom-
position of the function into its separately integrable com-
ponents. Building on the properties of this novel formula-
tion, we devise an efficient algorithm combining a strong re-
duction in the number of models to be generated and inte-
grated over, with efficiency in enumerating these models. The
key ingredient is the use of SMT-based predicate abstrac-
tion techniques [Graf and Saı̈di, 1997; Lahiri et al., 2006;
Cavada et al., 2007] to efficiently and effectively generate
the set of models needed to compute the exact integral. Our
experimental evaluation confirms that the approach is drasti-
cally faster than existing alternatives over synthetic and real-
world problems, and that both aspects contribute to the gain.

2 Background
2.1 SMT, AllSMT and Predicate Abstraction
We assume the reader is familiar with the basic syntax, se-
mantics and results of propositional and first-order logics.
We adopt some terminology and concepts from Satisfiability
Modulo Theories (SMT), which we briefly summarize below
(see [Sebastiani, 2007; Barrett et al., 2009] for details).

Our context is that of SMT on quantifier-free formulas
in the theory of linear arithmetic over the reals, LRA. R
denotes the set of real values and B def

= {>,⊥} the set of
Boolean values. LRA formulas are combinations by means
of the standard Boolean operators {¬,∧,∨,→,↔} of atomic
propositions Ai ∈ B (aka Boolean atoms/variables) and
of LRA atomic formulas (aka LRA atoms) in the form
(
∑
i cixi ./ c), s.t. xi are variables in R, ci are rational val-

ues and ./ ∈ {=, 6=,≥,≤, >,<}, with their usual semantics.
“|=LRA” denotes entailment in LRA (e.g. (x ≥ 2) |=LRA
(x ≥ 1)), whereas “|=B” denotes tautological entailment (e.g.
A1∧(x ≥ 2) |=B ((A1∨(x ≤ 1))∧(¬A1∨(x ≥ 2)).) Notice

that |=B is strictly stronger than |=LRA. ϕ1, ϕ2 are LRA-
equivalent, written ϕ1 ⇔LRA ϕ2, iff |=LRA (ϕ1 ↔ ϕ2).

We frequently use the following abbreviations. Let t, ti
be LRA terms, ϕ,ϕi be LRA formulas, and I = [l, u] be
some interval; then we use “Jt∈ IK” as a shortcut for the for-
mula (t ≥ l) ∧ (t ≤ u), possibly with “>” or “<” if some
end of the interval is open; we use “(If ϕ Then t1 Else t2)”
to represent an if-then-else conditional expression, returning
the value of t1 if ϕ holds, the value of t2 otherwise; we use
“(Case ϕ1 : t1; ϕ2 : t2; ...)” to generalize the if-then-
else to the case of multiple mutually-exclusive conditions.
We use “OneOf({ϕ1, ..., ϕn})” as a shortcut for the formula
(
∨n
i=1 ϕi)∧

∧
1≤i<j≤n ¬(ϕi ∧ϕj), i.e, exactly one ϕi holds.

Given a set of LRA formulas Ψ
def
= {ψ1, ..., ψK}, we call

a total [resp. partial] truth assignment µ for Ψ any total
[resp. partial] map from Ψ to B. We represent µ alternatively
and equivalently either as a set or a conjunction:
µ

def
= {ψ | ψ ∈ Ψ, µ(ψ) = >} ∪ {¬ψ | ψ ∈ Ψ, µ(ψ) = ⊥},

µ
def
=
∧
ψ∈Ψ,µ(ψ)=> ψ ∧

∧
ψ∈Ψ,µ(ψ)=⊥ ¬ψ.

We denote by BK the set of all truth assignments over Ψ.
Let x

def
= {x1, ..., xN} ∈ RN and A

def
= {A1, ..., AM} ∈

BM for some N and M . Consider a generic LRA formula
ϕ on (subsets of) x and A, and let Ψ

def
= Atoms(ϕ), i.e. the

set of propositional and LRA atoms occurring in ϕ. Given
a truth assignment µ for Atoms(ϕ), we denote by µA and
µLRA its two components on the Boolean atoms in A and on
the LRA atoms respectively, so that µ = µA ∧ µLRA. (E.g.,
if µ = A1∧¬A2∧(x ≥ 1)∧¬(x ≥ 3), then µA = A1∧¬A2

and µLRA = (x ≥ 1) ∧ ¬(x ≥ 3)). Importantly, and unlike
with pure propositional logic, µ can be LRA-unsatisfiable
due to its µLRA component (e.g. µ def

= ¬A1 ∧ (x1 + x2 =
3) ∧ ¬(x1 + x2 ≥ 2)). A (possibly partial) truth assignment
µ propositionally satisfies ϕ iff µ |=B ϕ. The SMT problem
for ϕ in LRA is the problem of checking the existence of a
LRA-satisfiable assignment µ s.t. µ |=B ϕ.

We denote by TTA(ϕ)
def
= {µ1, ..., µj , ...} the set of all

LRA-satisfiable total truth assignments µj on Atoms(ϕ)
propositionally satisfying ϕ. TTA(ϕ) is unique. We de-
note by TA(ϕ)

def
= {µ1, ..., µj , ...} any set of LRA-satisfiable

possibly-partial truth assignments µj propositionally satis-
fying ϕ, s.t. every pair µi, µj assign opposite truth val-
ues to at least one element, i.e., µi ∧ µj |=B ⊥ (hence
µi ∧ µj |=LRA ⊥). TA(ϕ) is not unique, and TTA(ϕ) is
a particular case of TA(ϕ). The disjunction of the µj’s in
TA(ϕ) is LRA-equivalent to ϕ (see e.g. [Sebastiani, 2007]):

ϕ ⇔LRA
∨
µj∈TA(ϕ) µj . (1)

The AllSMT problem for ϕ in LRA is the problem of enu-
merating one set TA(ϕ) matching the above definition.

For example, if ϕ
def
= (x ≤ 0) ∨ (x ≥ 1), then

TTA(ϕ)
def
= {(x ≤ 0) ∧ ¬(x ≥ 1),¬(x ≤ 0) ∧ (x ≥ 1)}.

(TTA(ϕ) does not contain (x ≤ 0) ∧ (x ≥ 1)
as it is not LRA-satisfiable.) The other admis-
sible TA(ϕ)’s are: {(x ≤ 0),¬(x ≤ 0) ∧ (x ≥ 1)} and
{(x ≥ 1), (x ≤ 0) ∧ ¬(x ≥ 1)}. The set of unary truth as-
signments {(x ≤ 0), (x ≥ 1)} is not an admissible TA(ϕ) be-

cause there is no atom to which they assign different truth
values, i.e., (x ≤ 0) ∧ (x ≥ 1) 6|=B ⊥.
Definition 1 Let ϕ(x,A) be a LRA-formula on x and A;
let Ψ

def
= {ψ1, ..., ψK} be a set of LRA-formulas over x and

A, and B
def
= {B1, ..., BK} be a set of fresh atomic proposi-

tions s.t. A ∩B = ∅. Then we call a Predicate Abstraction
of ϕ wrt. Ψ on B, namely PredAbs[ϕ,Ψ](B), (any formula
equivalent to) the propositional formula

∃A∃x.
(
ϕ(x,A) ∧

∧K
k=1(Bk ↔ ψk(x,A))

)
. (2)

We define PredAbs[ϕ](Ψ)
def
= PredAbs[ϕ,Ψ](B)[B ← Ψ],

that is, the LRA-formula obtained from PredAbs[ϕ,Ψ](B) by
substituting each Bk with its corresponding ψk. Importantly,
if Ψ is A, then PredAbs[ϕ](A) reduces to ∃x.ϕ(x,A).
Notice that in Definition 1 the formulas ψi are neither
necessarily atomic, nor necessarily sub-formulas of ϕ.
PredAbs[ϕ,Ψ](B) defines an equivalence class of Boolean
formulas over B, i.e., (2) may represent many syntactically-
different albeit logically-equivalent Boolean formulas.

Very effective SMT-based techniques for computing
PredAbs[ϕ,Ψ](B)—and hence PredAbs[ϕ](Ψ)—have been
proposed in the literature (e.g. [Lahiri et al., 2006; Cavada
et al., 2007]) and are implemented in modern SMT solvers
like MATHSAT5 [Cimatti et al., 2013]. Very impor-
tantly for our purposes, these techniques work by itera-
tively producing a set of propositional truth assignments
on B, which are then disjoined as in (1). In particular
MATHSAT5, on demand, can either produce a set of to-
tal assignments TTA(PredAbs[ϕ,Ψ](B)), or a set of par-
tial ones TA(PredAbs[ϕ,Ψ](B)) by means of assignment-
minimization techniques.

Example 1 Consider A
def
= {A1}, x

def
= {x1, x2}, ϕ

def
= A1 ∧

(x1 +x2 > 12), ψ1
def
= (x1 +x2 = 2), ψ2

def
= (x1−x2 < 10).

PredAbs[ϕ,Ψ](B)
def
=
∃A1.
∃x1x2.

[
A1 ∧ (x1 + x2 > 12)∧
(B1 ↔ (x1 + x2 = 2))∧
(B2 ↔ (x1 − x2 < 10))

]
= (¬B1 ∧ ¬B2) ∨ (¬B1 ∧B2) (3)
= ¬B1. (4)

PredAbs[ϕ](Ψ) = ¬(x1 + x2 = 2). (5)

(3) is built as the disjunction of total assignments on B,
whereas (4) is built as the disjunction of partial ones—e.g.,
by the clause-minimization techniques in MATHSAT5—s.t.:

TTA(PredAbs[ϕ,Ψ](B)) = {(¬B1 ∧ ¬B2), (¬B1 ∧B2)}
TA(PredAbs[ϕ,Ψ](B)) = {(¬B1)}

TTA(PredAbs[ϕ](Ψ)) =


(¬(x1 + x2 = 2)∧
¬(x1 − x2 < 10)),

(¬(x1 + x2 = 2)∧
(x1 − x2 < 10))


TA(PredAbs[ϕ](Ψ)) = {(¬(x1 + x2 = 2))}

Notice also that the other two total assignments, B1 ∧B2 and
B1 ∧ ¬B2, are not part of (3) because they force the formula
to be LRA-unsatisfiable. �

2.2 Weighted Model Counting and Integration
WMC is the task of computing the weighted sum of all sat-
isfying assignments of a propositional formula, with weights
typically factorized as a product of weights over literals.
Definition 2 (Weighted Model Count) Let ϕ be a proposi-
tional formula and let w be a function associating a non-
negative weight to each atom in ϕ, both asserted and negated.
The Weighted Model Count of ϕ is defined as:

WMC(ϕ,w) =
∑
µ∈TTA(ϕ)

∏
`∈µ w(`). (6)

WMI generalizes WMC to hybrid domains. Following is
the original definition of WMI [Belle et al., 2015], which
serves as a starting point for our revised formulation. The
definition assumesLRA formulas, for which efficient solvers
exist, albeit the concept could in principle accommodate other
theories over continuous domains.
Definition 3 (Weighted Model Integral) Let ϕ be a LRA
formula on the set of LRA variables x

def
= {x1, ..., xN} and

Boolean atoms A
def
= {A1, ..., AM}. Let w be a function asso-

ciating an expression (possibly constant) over x to each atom
in ϕ, both asserted and negated. The Weighted Model Inte-
gral of ϕ is defined as:

WMI(ϕ,w) =
∑
µ∈TTA(ϕ)

∫
µLRA

∏
`∈µ w(`) dx. (7)

3 Weighted Model Integration, Revisited
Definition 3 is a very direct and intuitive generalization of
WMC to the hybrid case. Nethertheless, it suffers from some
theoretical and practical limitations, which are fixed by the
revised formalization we introduce in this section.

First, Definition 3 implicitly assumes WMI to be computed
over the Boolean and LRA variables in the formula. Explic-
itly defining the domain is however of primary importance in
order to guarantee consistency e.g. in marginalization, as will
be shown in the following (see Remarks 1 and 2).

Second, the fact that weights are associated to literals can
produce situations in which two formulas are equivalent, but
their WMI over the same weight function w differ.
Example 2 Consider w s.t. w((x ≥ 0)) = w((x ≤ 3)) = 1,
w((x ≥ 1)) = w(¬(x ≥ 1)) = 1

2 ; consider the two LRA-

equivalent formulas ϕ1
def
= ((x ≥ 0) ∧ (x ≤ 3)) and ϕ2

def
=

((x ≥ 0) ∧ ¬(x ≥ 1)) ∨ ((x ≥ 1) ∧ (x ≤ 3)). Then

WMI(ϕ1, w) =
∫
(x≥0)∧(x≤3) 1 ·1 dx =

∫
[0,3]

1 dx = 3.

WMI(ϕ2, w) =
∫
(x≥0)∧¬(x≥1)∧(x≤3) 1 · 12 ·1 dx

+
∫
(x≥0)∧(x≥1)∧(x≤3) 1 · 12 ·1 dx

=
∫
[0,1)

1
2 dx+

∫
[1,3]

1
2 dx = 1

2 + 2
2 = 3

2 .

Our novel formalization guarantees instead that two LRA-
equivalent formulas have the same WMI (Property 2.b). �

Finally, the fact that the summation is over all total truth as-
signments may be a major source of inefficiency, because of-
ten many LRA atoms do not really contribute to the compu-
tation of the WMI. Our novel formalization allows to model
these cases, opening the way to a more efficient algorithm for
WMI computation (see §5).

3.1 Basic case: WMI Without Atomic Propositions
We investigate first the simple case where no atomic proposi-
tion comes into play. Let x

def
= {x1, ..., xN} ∈ RN . We con-

sider thus a generic weight function w(x) s.t. w : RN 7−→
R+, and LRA formulas ϕ(x) s.t. ϕ : RN 7−→ B.
Definition 4 Assume ϕ does not contain atomic propositions
and w : RN 7−→ R+. Then the Weighted Model Integral of
w over ϕ on x is defined as:

WMInb(ϕ,w|x)
def
=
∫
ϕ(x)

w(x) dx, (8)

“nb” meaning “no-Booleans”, that is, as the integral of w(x)
over the set {x | ϕ(x) is true}.

The following property of WMInb(ϕ,w|x) derives directly
from Definition 4.
Property 1 Given x, w, ϕ, and ϕ′ as above,

a. if ϕ is LRA-unsatisfiable, then WMInb(ϕ,w|x) = 0.
b. if ϕ⇔LRA ϕ′,

then WMInb(ϕ,w|x) = WMInb(ϕ
′, w|x)

c. for every LRA-formula ψ(x),

WMInb(ϕ,w|x) = WMInb(ϕ ∧ ψ,w|x)

+ WMInb(ϕ ∧ ¬ψ,w|x).

Remark 1 We stress the fact that in the definition of
WMInb(ϕ,w|x) specifying the domain “|x” is of primary
importance. In fact, even if some xn does not occur in
ϕ, WMInb(ϕ,w|x) =

∫
R WMInb(ϕ,w|x\{xn}) dxn 6=

WMInb(ϕ,w|x\{xn}). “|x” defines the dimensions of the
space we are integrating on, which must be stated. (E.g., in-
tegrating on volumes differs from integrating on surfaces.)

3.2 General Case: WMI With Atomic Propositions
We investigate now the general case, where atomic proposi-
tions come into play and both w and ϕ depend also on them.
Let A

def
= {A1, ..., AM} ∈ BM . We consider thus a generic

weight function w(x,A) s.t. w : RN × BM 7−→ R+, and
LRA formulas ϕ(x,A) s.t. ϕ : RN × BM 7−→ B.

In what follows, µA denotes a total truth assignment on
A, ϕ[µA](x) denotes (any formula equivalent to) the formula
obtained from ϕ by substituting every Boolean value Ai with
its truth value in µA, and w[µA](x) is w computed on x and
on the truth values of µA. Thus, ϕ[µA] : RN 7−→ B and
w[µA] : RN 7−→ R+.

Definition 5 Given x, A, the Weighted Model Integral of
w over ϕ is defined as follows:

WMI(ϕ,w|x,A)
def
=

∑
µA∈BM

WMInb(ϕ[µA], w[µA]|x), (9)

where the µA’s are all total truth assignments on A.

Example 3 Let ϕ def
= (A↔ (x ≥ 0)) ∧ (x ≥ −1) ∧ (x ≤ 1),

and w(x,A)
def
= (If A Then x Else − x). If µA def

= {(¬A)},
then ϕ[µA] = ¬(x ≥ 0) ∧ (x ≥ −1) ∧ (x ≤ 1) and w[µA] =
−x. Notice that ϕ[µA] can be simplified into the equivalent

formula ¬(x ≥ 0) ∧ (x ≥ −1). Similarly, if µA def
= {(A)},

then ϕ[µA] can be simplified into (x ≥ 0) ∧ (x ≤ 1) and
w[µA] = x. Thus,

WMI(ϕ,w|x,A)
def
= WMInb(ϕ[{¬A}], w[{¬A}]|x) +

WMInb(ϕ[{A}], w[{A}]|x)

=
∫
[−1,0)−x dx+

∫
[0,1]

x dx

= 1
2 + 1

2 = 1. �

Notice that in Definition 5 the truth assignments µA of
practical interest are only those for which ϕ[µA] is LRA-
satisfiable, because for the others WMInb(ϕ[µA], w[µA]|x) =
0 by Property 1.a. We address this issue in §5.

The following property of WMI(ϕ,w|x,A) derives di-
rectly from Definition 5, by applying Property 1 to w[µA],
ϕ[µA], ϕ′[µA], (ϕ ∧ ψ)[µA], and (ϕ ∧ ¬ψ)[µA], for every µA.

Property 2 Given x, A, w, ϕ, and ϕ′ as above,
a. if ϕ is LRA-unsatisfiable, then WMI(ϕ,w|x,A) = 0.
b. if ϕ⇔LRA ϕ′,

then WMI(ϕ,w|x,A) = WMI(ϕ′, w|x,A)

c. for every LRA-formula ψ(x,A),

WMI(ϕ,w|x,A) = WMI(ϕ ∧ ψ,w|x,A)

+ WMI(ϕ ∧ ¬ψ,w|x,A).

Remark 2 As with Remark 1, in WMI(ϕ,w|x,A), specify-
ing not only “|x”, but also “|x,A” is of primary importance.
In fact, even if some of the Am does not occur in ϕ,
WMI(ϕ,w|x,A) = WMI(ϕ,w[{Am}]|x,A\{Am}) +
WMI(ϕ,w[{¬Am}]|x,A\{¬Am}) 6=
WMI(ϕ,w|x,A\{Am}).

Predicate abstraction in Def. 1 and other forms of
frequently-used formula manipulations require the introduc-
tion of fresh propositions B “labelling” sub-formulas ψ. The
next result shows that this does not affect the value of WMI.

Theorem 1 Let x, A, w, and ϕ be as in Definition 5; let
ψ(x,A) be some LRA-formula; let ϕ′

def
= ϕ ∧ (B ↔ ψ),

where B 6∈ A; let w′ extend w s.t. w′(x,A ∪ {B}) =
w(x,A) for every x, A and B. Then we have that

WMI(ϕ′, w′|x,A ∪ {B}) = WMI(ϕ,w|x,A). (10)

Proof (sketch) We notice that ϕ′[µA∧B] ⇔LRA (ϕ ∧ ψ)[µA]

and that ϕ′[µA∧¬B] ⇔LRA (ϕ∧¬ψ)[µA], so that (10) follows
directly from Definition 5 and Property 1.c. 2

3.3 Conditional Weight Functions
We call a (non-minimal) support of a weight function
w(x,A) any subset of RN ×BM out of which w(x,A) = 0.
In many situations we may want to provide the representation
of a support of w(x,A) as a LRA-formula χ(x,A). When
this is the case, the following property follows trivially.

Property 3 Let ϕ and w be as above. If χ(x,A) is a LRA-
formula representing a support of w, then:

WMI(ϕ,w|x,A) = WMI(ϕ ∧ χ,w|x,A). (11)

We introduce a novel kind of weight function, which can
be defined also in terms of LRA conditions. (See §4 for
an example application). We consider first the generic class
of functions P (x), which we call feasibly integrable on
LRA (FILRA), which contain no combinatorial component,
and for which there exists some procedure able to compute
WMInb(µ

LRA, P |x) for every set of LRA atoms on x. (E.g.,
polynomials are FILRA [Baldoni et al., 2011]). Such back-
ground procedure, which we use as a blackbox, is the basic
building block of our WMI calculations.

Definition 6 We call a weight function w(x,A), feasibly in-
tegrable under LRA conditions (FIUCLRA) iff it can be
described in terms of

• a support LRA-formula χ(x,A) (if no support descrip-
tion is provided, than χ

def
= >),

• a set Ψ
def
= {ψ1(x,A), ..., ψK(x,A)} of LRA-formulas

(conditions),

in such a way that, for every total truth assignment µA to A
and for every total truth assignment µΨ to Ψ, w[µAµΨ](x)
is FILRAin the domain given by the values of 〈x,A〉 which
satisfy (χ ∧ µΨ)[µA]. We denote such FILRAfunctions by
fµAµΨ(x), s.t. for every 〈µA, µΨ〉,

if µA ∧ µΨ holds, then w(x) = fµAµΨ(x). (12)

(Notice that a plain FILRAweight function is a subcase in
which χ def

= > and Ψ
def
= ∅.)

Example 4 Let x
def
= {x1, x2}, A

def
= {A}, and

χ(x,A)
def
= Jx1∈ [−1, 1)K ∧ Jx2∈ [−1, 1)K (13)
∧ (A↔ (x2 ≥ 0)) (14)

w(x,A)
def
= (If x1 ≥ 0 Then x31 Else − 2x1) (15)

+ (If A Then 3x2 Else − x52). (16)

w is FIUCLRA. In fact, its value depends on the combina-
tion of the truth values of the conditions Ψ

def
= {(x1 ≥ 0)} and

A
def
= {A} –i.e., of {(x1 ≥ 0), (x2 ≥ 0)} by (14)– so that:

f{A,(x1≥0)} = x31 + 3x2 s.t. x1 ∈ [0, 1), x2 ∈ [0, 1),
f{A,¬(x1≥0)} = −2x1 + 3x2, s.t. x1 ∈ [−1, 0), x2 ∈ [0, 1),
f{¬A,(x1≥0)} = x31 − x52, s.t. x1 ∈ [0, 1), x2 ∈ [−1, 0),
f{¬A,¬(x1≥0)} = −2x1−x52. s.t. x1 ∈ [−1, 0), x2 ∈ [−1, 0).
All four fµAµΨ are positive polynomials in their respective
domain and as such they can be integrated. �

Intuitively, Definition 6 captures the class of all the weight
functions which can be described by means of arbitrary com-
binations of nested if-then-elses on conditions in A and Ψ,
s.t. each branch 〈µA, µΨ〉 results into a FILRAweight func-
tion. Each pair 〈µA, µΨ〉 describes a portion of the domain
of w, inside which w is the FILRAfunction fµAµΨ .

Theorem 2 Let w(x,A), Ψ and χ be as in Definition 6.
Let B

def
= {B1, ..., BK} be fresh propositional atoms and let

w∗(x,A∪B) be the weight function obtained by substituting

in w(x,A) each condition ψk with Bk, for every k ∈ [1..K].
Let ϕ∗

def
= ϕ ∧ χ ∧

∧K
k=1(Bk ↔ ψk). Then:

WMI(ϕ ∧ χ,w|x,A) = WMI(ϕ∗, w∗|x,A ∪B).(17)

Proof To every truth assignment µΨ to Ψ we associate the
corresponding truth assignment µB to B s.t. µB(Bk) =
µΨ(ψk), for every k ∈ [1..K]. We notice that, for every
µA ∈ BM and µB ∈ BK (with its corresponding µΨ):

ϕ∗[µA∧µB] ⇔LRA (ϕ ∧ χ ∧ µΨ)[µA∧µB], (18)

because every ψk is forced by µΨ to assume the same truth
valueBk assumes in µB. Letw′ extendw s.t. w′(x,A∪B) =
w(x,A) for every x, A and B. Then, since ϕ∗ forces every
Bk to hold if and only if Ψk holds, we have:

WMInb(ϕ
∗
[µA∧µB], w

′
[µA∧µB]|x) (19)

= WMInb(ϕ
∗
[µA∧µB], w

∗
[µA∧µB]|x).

Then, by applying K times Theorem 1, and then (19):

WMI(ϕ ∧ χ,w|x,A)

= WMI(ϕ ∧ χ ∧
K∧
k=1

(Bk ↔ ψk), w′|x,A ∪B)

=
∑

µA∈BMµB∈BK
WMInb(ϕ

∗
[µA∧µB], w

′
[µA∧µB]|x)

=
∑

µA∈BMµB∈BK
WMInb(ϕ

∗
[µA∧µB], w

∗
[µA∧µB]|x)

= WMI(ϕ∗, w∗|x,A ∪B). 2

Example 5 Let A = ∅, χ def
= (x ≥ −1) ∧ (x ≤ 1),

ϕ
def
= >, ψ

def
= (x ≥ 0), and the weight w(x)

def
=

(If (x ≥ 0) Then x Else − x). (I.e., w(x)
def
= |x|. Then

WMI(ϕ,w|x, ∅) = WMInb(ϕ,w|x) =
∫
[−1,1] |x| dx = 1. By

Theorem 1, ϕ∗ = (x ≥ −1)∧ (x ≤ 1)∧ (B ↔ (x ≥ 0)) and
w∗ = (If B Then x Else − x), which are the same formula
and weight function as in Example 3 (modulo some reorder-
ing and variable renaming), s.t. WMI(ϕ∗, w∗|x,B) = 1. �

Intuitively, during the computation of the WMIs, Theo-
rem 2 allows for extracting out of the integrals the if-then-
else component on LRA conditions, which are labeled by
Boolean atoms and can be thus handled externally.

Notice that the pairs of truth assignments 〈µA, µΨ〉 of
practical interest are only those for which (χ ∧ µΨ)[µA] is
LRA-satisfiable. We will address this issue in §5.

4 A Case Study
Consider modelling journey time on a road network for e.g.
a delivery agency. In order to safely organize priority deliv-
eries, the agency could be interested in knowing well in ad-
vance the probability of completing the journey within a cer-
tain time, given the time of departure. An accurate estimate
requires to consider how travel duration between locations
can change according to the time of the day, and combine

these duration distributions over the entire route. A different
encoding for the same problem was presented in the original
WMI work [Belle et al., 2015].

Suppose that the day is partitioned into {I1, ..., IM} inter-
vals such that, for each adjacent location li and lj in the road
network and for each Im def

= [cm, cm+1), we know the distri-
bution of the journey time from li to lj given that we move
at time t ∈ Im. Let fmli,lj : R 7→ R+ denote such distribu-

tion and let the interval Rmli,lj
def
= [amli,lj , b

m
li,lj

) be its support.
(Notice that the Ims are all disjoint whereas the Rmli,lj s are
typically not.)

Given a path (l0, ..., lN) and the departure time tdep, we
can encode the problem as follows. Let tn be the time at
step n and xn the journey time between ln−1 and ln. Let
x

def
= {x1, ..., xN}. (Here A

def
= ∅.)

ϕ(x)
def
= >

χ(x)
def
=

∧N
n=1 OneOf({Jtn−1∈ ImK}Mm=1)

∧
∧N
n=1

∧M
m=1(Jtn−1∈ ImK→ Jxn∈ Rmln−1,ln

K)

w(x)
def
=

∏N
n=1 fn(x)

where “Jtn−1 ∈ ImK” is a shortcut for the LRA formula
“(
∑n−1
i=1 xi + tdep ≥ cm) ∧ (

∑n−1
i=1 xi + tdep < cm+1)”,

“Jxn∈ Rmln−1,ln
K” is a shortcut for the LRA formula

“(xn ≥ amln−1,ln
) ∧ (xn < bmln−1,ln

)”, and fn(x) is:
(Case Jtn−1 ∈ I1K : f1ln−1,ln

(xn); ... Jtn−1 ∈ IMK :

fMln−1,ln
(xn)). Under the assumption that each distribution

fmli,lj (x) is feasibly integrable if x ∈ Rmli,lj , then w(x) is

FIUCLRA with N ·M conditions ψmn
def
= Jtn ∈ ImK. Thus

we can introduce N ·M fresh Boolean atoms Bmn and apply
Theorem 2, s.t.:

ϕ∗(x,B)
def
=ϕ(x) ∧ χ(x) ∧

N∧
n=1

M∧
m=1

(Bmn−1 ↔ Jtn−1∈ ImK)

w∗(x,B)
def
=

N∏
n=1

f∗n(xn, {B1
n−1, ..., B

M
n−1}),

where f∗n(xn, {B1
n−1, ..., B

M
n−1}) is the case-split formula

(Case B1
n−1 : f1ln−1,ln

(xn); ... BMn−1 : fMln−1,ln
(xn)).

Each distribution fmln−1,ln
is thus associated to Bmn . Notice

that, for each step n, exactly one condition variable Bmn is
true, representing the fact that the n-th location is reached
during the m-th interval. Intuitively, this allows to select
at each step the distribution corresponding to the interval in
which the location is reached.
Example 6 Consider an instance of our case study where
A

def
= ∅, N = 2, M = 3, ϕ def

= > and

χ(x)
def
=OneOf({Jtdep∈ [7, 8)K, ..., Jtdep∈ [9, 10)K})
∧OneOf({Jtdep + x1∈ [7, 8)K, ..., Jtdep + x1∈ [9, 10)K})
∧Jtdep∈ [7, 8)K→ Jx1∈ [0.5, 1)K
∧Jtdep∈ [8, 9)K→ Jx1∈ [1, 1.5)K
∧Jtdep∈ [9, 10)K→ Jx1∈ [1, 2)K

∧Jtdep + x1∈ [7, 8)K→ Jx2∈ [1, 1.5)K
∧Jtdep + x1∈ [8, 9)K→ Jx2∈ [1.5, 2)K
∧Jtdep + x1∈ [9, 10)K→ Jx2∈ [1, 2)K

w(x)
def
=

Case

Jtdep∈ [7, 8)K : f1l0l1(x1);

Jtdep∈ [8, 9)K : f2l0l1(x1);

Jtdep∈ [9, 10)K : f3l0l1(x1);

×
Case

Jtdep + x1∈ [7, 8)K : f1l1l2(x2);

Jtdep + x1∈ [8, 9)K : f2l1l2(x2);

Jtdep + x1∈ [9, 10)K : f3l1l2(x2);


where the fmln−1ln

(xn) are function which are integrable
and positive in their respective domain stated in χ(x) (e.g.,
f1l0l1(x1) is integrable and positive in Jx1∈ [0.5, 1)K).

Then, by applying Theorem 2, we can introduce 6 Boolean
variables Bmn and reformulate the problem as follows:

ϕ∗(x,B)
def
= ϕ(x) ∧ χ(x) (20)

∧ (B1
0 ↔ Jtdep∈ [7, 8)K) ∧ ... ∧

∧ (B3
1 ↔ Jtdep + x1∈ [9, 10)K)

w∗(x,B)
def
=

Case

B1
0 : f1l0l1(x1);

B2
0 : f2l0l1(x1);

B3
0 : f3l0l1(x1);

 × (21)

Case

B1
1 : f1l1l2(x2);

B2
1 : f2l1l2(x2);

B3
1 : f3l1l2(x2);


5 Efficient WMI Computation
We consider the general problem of computing a WMI with
a FIUCLRA weight function. The first step (if needed) is
a preprocessing in which the problem is transformed by la-
beling all conditions Ψ with fresh Boolean atoms B, as in
Theorem 2. Let ϕ∗, w∗,x,A∗ be the result of such process,
where A∗

def
= A ∪B. Consequently, for every µA∗ , w∗

[µA∗]
is

feasibly integrable on ϕ∗
[µA∗]

.

WMI-AllSMT. Consider µ = µA∗ ∧ µLRA ∈ TTA(ϕ∗).
Then µLRA ∈ TTA(ϕ∗

[µA∗]
), so that we can compute

WMInb(µ
LRA, w∗

[µA∗]
|x). This allows us to compute (9) as:

WMI(ϕ,w|x,A) = WMI(ϕ∗, w∗|x,A∗)

=
∑

µA∗∧µLRA∈TTA(ϕ∗)

WMInb(µ
LRA, w∗[µA∗]|x) (22)

The set TTA(ϕ∗) is computed by an AllSMT proce-
dure implemented on top of an SMT solver like MATH-
SAT5—i.e., as TTA(PredAbs[ϕ∗](Atoms(ϕ

∗))), without
the assignment-minimization technique (see §2.1); each
WMInb(µ

LRA, w∗
[µA∗]

|x) is computed by invoking our back-

ground integration procedure for FILRA functions of §3.3.
We call this algorithm WMI-AllSMT.

Algorithm 1 WMI-PA(ϕ, w, x, A)

〈ϕ∗, w∗,A∗〉 ← LabelConditions(ϕ,w,x,A)
MA∗ ← TTA(PredAbs[ϕ∗](A

∗))
vol← 0
for µA∗ ∈MA∗ do
Simplify(ϕ∗

[µA∗]
)

if LiteralConjunction(ϕ∗
[µA∗]

) then
vol← vol + WMInb(ϕ

∗
[µA∗]

, w∗
[µA∗]

|x)

else
MLRA ← TA(PredAbs[ϕ∗

[µA∗]
](Atoms(ϕ

∗
[µA∗]

)))

for µLRA ∈MLRA do
vol← vol + WMInb(µ

LRA, w∗
[µA∗]

|x)

end for
end if

end for
return vol

WMI-PA. A much more efficient technique, which we call
WMI-PA because it exploits the full power of SMT-based
predicate abstraction, can be implemented by noticing that

WMI(ϕ,w|x,A) =
∑

µA∗∈TTA(∃x.ϕ∗)

WMInb(ϕ
∗
[µA∗], w

∗
[µA∗]|x) (23)

and that each WMInb(ϕ
∗
[µA∗]

, w∗
[µA∗]

|x) can be computed as:∑
µLRA∈TA(ϕ∗

[µA∗]
)

WMInb(µ
LRA, w∗[µA∗]|x). (24)

The pseudocode of WMI-PA is reported in Algorithm 1.
First, the problem is transformed (if needed) by labeling
conditions Ψ with fresh Boolean variables B. After this
preprocessing stage, the set MA∗ def

= TTA(∃x.ϕ∗) is com-
puted by invoking TTA(PredAbs[ϕ∗](A

∗)) (see §2.1). Then,
the algorithm iterates over each Boolean assignment µA∗

in MA∗ . ϕ∗
[µA∗]

is simplified by the Simplify procedure,
by propagating truth values (e.g., ϕ1 ∧ (> ∨ ϕ2) ∧ (⊥ ∨
ϕ3) ∧ (¬ϕ3 ∨ ϕ4) ⇒ ϕ1 ∧ ϕ3 ∧ ϕ4) and by applying arith-
metical simplifications like theory propagation [Barrett et al.,
2009]. This improves the chances of reducing ϕ∗

[µA∗]
to a

conjunction of literals, and allows for reducing the size of
Atoms(ϕ∗

[µA∗]
) to feed to PredAbs (see below). Then, if

ϕ∗
[µA∗]

is already a conjunction of literals, then the algorithm
directly computes its contribution to the volume by calling
WMInb(ϕ

∗
[µA∗]

, w∗
[µA∗]

|x). Otherwise, TA(ϕ∗
[µA∗]

) is com-
puted as TA(PredAbs[ϕ∗

[µA∗]
](Atoms(ϕ

∗
[µA∗]

))), using the

minimization technique to produce partial assignments (see
§2.1), and the algorithm iteratively computes contributions to
the volume for each µLRA.

Comparing (23) with (9) —even if ϕ∗, w∗,x,A∗ were re-
spectively ϕ,w,x,A— we notice that the restriction of the
sum to TTA(∃x.ϕ∗) in (23) removes a priori all the assign-
ments µA∗ which cannot be expanded by any assignment
µLRA s.t. µA∗ ∧µLRA propositionally satisfy ϕ∗ and µLRA
is LRA-consistent, whose integrals would be 0-valued.

We argue that WMI-PA produces much less calls to the
background integration procedure WMInb(µ

LRA, w∗
[µA∗]

|x)

than WMI-AllSMT, for two main reasons.

First, the size of Atoms(ϕ∗
[µA∗]

) which is fed to PredAbs

in (24) can be made much smaller than the number of LRA-
atoms in Atoms(ϕ∗) fed to PredAbs in (22), since many
LRA-atoms are simplified out by µA∗ . (E.g., (x ≤ 1)∧(A2∨
(x ≥ 0)))[A2] is simplified into (x ≤ 1), so that (x ≥ 0) is
eliminated.) Thus, for each µA∗ , the number of assignments
in the form µA∗ ∧ µLRA which are enumerated in (23)-(24)
can be drastically reduced wrt. those enumerated in (22).

Second, with (24) it is possible to search for a set TA(...) of
partial assignments, each of which substitutes 2i total ones,
i being the number of unassigned LRA-atoms. Notice that,
unlike with Boolean atoms, we can safely produce partial as-
signments on LRA-atoms because w(x,A) does not depend
directly on them. (If ϕ∗

[µA∗]

def
= (x ≥ 0)∧((x ≤ 2)∨(x ≤ 1)),

the partial assignment µLRA def
= (x ≥ 0) ∧ (x ≤ 2) pre-

vents enumerating the two total ones µLRA ∧ (x ≤ 1) and
µLRA ∧ ¬(x ≤ 1), computing one integral rather than two.

Example 7 Consider the problem described by ϕ∗ and w∗
in Example 6. Suppose we want to leave l0 no earlier than
7 and no later than 10, and arrive to l2 strictly before 11.
These constraints correspond to conjoining Jtdep ∈ [7, 10)K ∧
(tarr = tdep + x1 + x2) ∧ (tarr < 11) to ϕ∗. In such case,
PredAbs[ϕ∗](B) is the following formula:

(B1
0 ∧ ¬B2

0 ∧ ¬B3
0 ∧ B1

1 ∧ ¬B2
1 ∧ ¬B3

1) (25)

∨(B1
0 ∧ ¬B2

0 ∧ ¬B3
0 ∧ ¬B1

1 ∧ B2
1 ∧ ¬B3

1) (26)

∨(¬B1
0 ∧ B2

0 ∧ ¬B3
0 ∧ ¬B1

1 ∧ ¬B2
1 ∧ B3

1) (27)

so that TTA(PredAbs[ϕ∗](B)) is the set of the three disjuncts
(25)-(27). Importantly, notice that the other 6 assignments,
which would make ϕ∗ LRA-unsatisfiable causing WMInb to
return 0, are not generated by PredAbs[ϕ∗](B). (E.g., ifB1

0 =
> then l1 is necessarily reached strictly before 9, which forces
B3

1 = ⊥, s.t. the assignment (B1
0 ∧ ...∧B3

1) is not generated.)

Suppose we fix tdep to some value val ∈ [7, 10) by con-
joining (tdep = val) to ϕ∗ (see §7): if val ∈ [7, 7.5), this
forces B1

0 = >, so that TTA(PredAbs[ϕ∗](B)) contains only
(25) and (26); if val ∈ [7.5, 8), this forces B1

0 = >, so that
TTA(PredAbs[ϕ∗](B)) contains only (26); if val ∈ [8, 9),
this forces B2

0 = >, so that TTA(PredAbs[ϕ∗](B)) reduces
only to (27); if val ∈ [9, 10), this makes the whole formula
LRA-inconsistent, so that TTA(PredAbs[ϕ∗](B)) is empty.

Now suppose, e.g., we set (tdep = 7.4), so that
TTA(PredAbs[ϕ∗](B)) contains only (25) and (26). Let (25)

be the first assignment selected in the for loop, that is, µB def
=

(B1
0 ∧¬B2

0 ∧¬B3
0 ∧B1

1 ∧¬B2
1 ∧¬B3

1). Propagating its truth
values inside ϕ∗ and w∗ in (20) and (21) and simplifying the

truth values, we obtain: 1

ϕ∗[µB] =(tdep = 7.4) ∧ Jtdep∈ [7, 10)K

∧(tarr = tdep + x1 + x2) ∧ (tarr < 11)

∧ Jtdep∈ [7, 8)K ∧ Jx1∈ [0.5, 1)K
∧ Jtdep + x1∈ [7, 8)K ∧ Jx2∈ [1, 1.5)K

w∗[µB] = f1l0l1(x1) · f1l1l2(x2)

ϕ∗[µB] is a conjunction of LRA-literals, so that WMInb can be
invokes on it directly without further invoking another predi-
cate abstraction. �

6 Related Work
Most works on probabilistic inference in hybrid graphical
models are either limited to joint Gaussian distributions [Lau-
ritzen and Jensen, 2001], or perform approximate infer-
ence [Gogate and Dechter, 2005; Afshar et al., 2016]. A re-
cent line of research focused on developing exact inference
algorithms for graphical models with mixtures of polynomi-
als [Shenoy and West, 2011; Sanner and Abbasnejad, 2012;
Wang et al., 2014]. The WMI formalism extends these ap-
proaches allowing to represent constraints in terms of arbi-
trary combinations of Boolean connectives.

The first solver for exact WMI [Belle et al., 2015] was
a proof-of-concept relying on a simple block-clause strat-
egy (WMI-BC in the following), which iteratively generates
new models by adding the negation of the latest model to
the formula for the following iteration. In the propositional
(WMC) case, substantial efficiency gains can be obtained by
leveraging component caching techniques [Sang et al., 2004;
Bacchus et al., 2009]. Unfortunately, these strategies are dif-
ficult to apply in the WMI case, because of the additional cou-
pling induced by algebraic constraints. A recent work [Belle
et al., 2016] did show substantial computational savings in
adapting #DPLL with component caching from the WMC
to the WMI case. The approach however works with purely
piecewise polynomial densities, and cannot be applied when-
ever algebraic constraints exist between variables, e.g. their
sum being within a certain range, a rather common situation
in many practical cases (see §4). In the same paper, an ap-
proach equivalent to WMI-ALLSMT applied to the original
WMI formulation was shown to improve over the WMI-BC
baseline. Nethertheless, further improvements are not possi-
ble without revising the formulation as we do in this work.

Closest to WMI is probabilistic inference modulo theo-
ries [de Salvo Braz et al., 2016], an elegant framework where
a combination of DPLL, SMT and symbolic variable elimi-
nation allows to perform probabilistic inference on a variety
of theories. While initially focused on integer arithmetic, the
system developed by the authors (called PRAISE2) was re-
cently provided with support for arithmetic over the reals and
polynomial densities.

1Notice that Jtdep ∈ [7, 10)K and Jtdep ∈ [7, 8)K are made redun-
dant by (tdep = 7.4); however, they do not affect the result.

2
http://aic-sri-international.github.io/aic-praise/

Figure 1: Query execution times and number of integrals computed in the synthetic setting by the three WMI approaches (resp. left and
center). Query execution times of WMI-PA and PRAISE on the Strategic Road Network setting (right).

7 Experiments
Our implementation uses MATHSAT53 [Cimatti et al., 2013]
for SMT reasoning and LATTE INTEGRALE4 [Loera et al.,
2012] to compute integrals of polynomials. All experiments
were run on a Virtual Machine with 7 cores running at a fre-
quency of 2.2 GHz and 94 GB of RAM. Query timeout was
set at 10000 seconds. When terminating, on each query all
tools returned the same value modulo roundings.

Synthetic setting. To evaluate the ability of WMI-PA to
deal with weight functions with arbitrarily complex supports,
we randomly generated LRA formulas like:

ϕ(x,A) =
∧N
i=1

(
(
∧
x∈RLRAi (x) x) ∨

∨
A∈RB

i (A)A
)

where N is a parameter controlling the size of ϕ(x,A),
RLRAi (x) are randomly generated sets ofLRA-atoms over x
andRB

i (A) are random subsets of A, for i ∈ [1, N]. For each
formula ϕ(x,A), randomly generated (polynomial) weight
functions are associated to the Boolean variables A. We then
compared the performance of WMI-PA in computing ran-
domly generated queries against the WMI-BC baseline (see
§6) and WMI-ALLSMT.

Figure 1(left) shows the execution time in seconds of the
three methods over all randomly generated formulas, where
formulas are ordered by increasing running time according to
the baseline. Whereas WMI-ALLSMT performs better than
the baseline for the most difficult cases, WMI-PA achieves
drastic speedups wrt both alternatives. Figure 1(center) re-
ports the number of integrals computed by the three meth-
ods, where formulas are ordered as before. The curves for
WMI-BC and WMI-ALLSMT are indistinguishable, an ex-
pected result as the two formulations generate the very same
set of total truth assignments, with WMI-ALLSMT doing it
more efficiently. Conversely, the predicate abstraction steps
of WMI-PA allow it to drastically reduce the number of as-
signments, and thus integrals to be computed.

Real-world setting. In order to show the applicability of
our method to real world tasks, we implemented the case

3
http://mathsat.fbk.eu/

4
https://www.math.ucdavis.edu/∼latte/

study described in §4. The data was taken from the Strate-
gic Road Network Dataset 5, which provides average journey
times on all the motorways managed by the English High-
ways Agency. From this dataset we extrapolated polynomial
distributions of journey times between all junctions, with a
15 minutes granularity. In this setting, the task is to perform
queries of the form P ((tN ≤ tarr)|tdep ∧ {li}Ni=0). We en-
coded an equivalent formulation for PRAISE and compared
the two approaches 6 over random queries for increasing path
lengths. The results in Figure 1(right) show the mean and
standard deviation of the execution times for both methods,
computed over 5 randomly generated queries for each path
length. Our approach is much faster, being able to compute
queries up to two steps longer without reaching the timeout.7

8 Conclusion and Future Work
In this paper we proposed a revised definition of WMI which
addresses some theoretical and practical limitations of the
original formulation. Building on the properties of the novel
formulation, we developed an efficient WMI algorithm com-
bining a substantial reduction in the number of integrations
with their efficient enumeration. Experimental comparisons
over synthetic and real-world data confirm the drastic effi-
ciency improvement over existing alternatives.

Future research directions include the study of decomposi-
tion strategies for further scalability, and the generalization of
WMI to combinations of theories, like linear arithmetic over
reals and integers.

Acknowledgments
This work has been partially supported by the EC project
CogNet, 671625 (H2020-ICT-2014-2, Research and Innova-
tion action). We thank Alberto Griggio for useful suggestions
about the usage of MATHSAT5.

5
https://data.gov.uk/dataset/dft-eng-srn-routes-journey-times

6WMI-BC and WMI-ALLSMT are not considered here as their
execution times are prohibitive for all but the smallest path lengths.

7Note that the complexity of the query is due to the combination
of the path length and the number of time intervals in which the time
horizon is divided (M=12 in these experiments). For paths of length
8, the total number of potential cases is M8 = 429981696. Clearly,
many of these cases are unfeasible and are ruled out by the SMT
solver before the integration.

References
[Afshar et al., 2016] Hadi Mohasel Afshar, Scott Sanner,

and Christfried Webers. Closed-form gibbs sampling for
graphical models with algebraic constraints. In AAAI,
2016.

[Bacchus et al., 2009] Fahiem Bacchus, Shannon Dalmao,
and Toniann Pitassi. Solving #SAT and Bayesian inference
with backtracking search. Journal of Artificial Intelligence
Research, 34(1):391–442, 2009.

[Baldoni et al., 2011] Velleda Baldoni, Nicole Berline, Je-
sus De Loera, Matthias Köppe, and Michéle Vergne. How
to integrate a polynomial over a simplex. Mathematics of
Computation, 80(273):297–325, 2011.

[Barrett et al., 2009] Clark W. Barrett, Roberto Sebastiani,
Sanjit A. Seshia, and Cesare Tinelli. Satisfiability Mod-
ulo Theories. In Handbook of Satisfiability, chapter 26,
pages 825–885. IOS Press, 2009.

[Belle et al., 2015] Vaishak Belle, Andrea Passerini, and
Guy Van den Broeck. Probabilistic inference in hybrid
domains by weighted model integration. In IJCAI, 2015.

[Belle et al., 2016] Vaishak Belle, Guy Van den Broeck, and
Andrea Passerini. Component caching in hybrid domains
with piecewise polynomial densities. In AAAI, 2016.

[Cavada et al., 2007] Roberto Cavada, Alessandro Cimatti,
Anders Franzén, Krishnamani Kalyanasundaram, Marco
Roveri, and RK Shyamasundar. Computing Predicate Ab-
stractions by Integrating BDDs and SMT Solvers. In FM-
CAD, 2007.

[Chavira and Darwiche, 2008] Mark Chavira and Adnan
Darwiche. On probabilistic inference by weighted model
counting. Artificial Intelligence, 172(6-7):772–799, 2008.

[Choi et al., 2013] Arthur Choi, Doga Kisa, and Adnan Dar-
wiche. Compiling probabilistic graphical models using
sentential decision diagrams. In Symbolic and Quanti-
tative Approaches to Reasoning with Uncertainty, pages
121–132. Springer, 2013.

[Cimatti et al., 2013] Alessandro Cimatti, Alberto Griggio,
Bastiaan Joost Schaafsma, and Roberto Sebastiani. The
MathSAT 5 SMT Solver. In TACAS, 2013.

[de Salvo Braz et al., 2016] Rodrigo de Salvo Braz, Ciaran
O’Reilly, Vibhav Gogate, and Rina Dechter. Probabilistic
Inference Modulo Theories. In IJCAI, 2016.

[Gogate and Dechter, 2005] Vibhav Gogate and Rina
Dechter. Approximate inference algorithms for hybrid
bayesian networks with discrete constraints. In UAI, 2005.

[Graf and Saı̈di, 1997] Susanne Graf and Hassen Saı̈di. Con-
struction of abstract state graphs with pvs. In CAV, 1997.

[Lahiri et al., 2006] Shuvendu K. Lahiri, Robert Nieuwen-
huis, and Albert Oliveras. SMT techniques for fast predi-
cate abstraction. In CAV, 2006.

[Lauritzen and Jensen, 2001] Steffen L. Lauritzen and Frank
Jensen. Stable local computation with conditional gaus-
sian distributions. Statistics and Computing, 11(2):191–
203, 2001.

[Loera et al., 2012] Jesus De Loera, Brandon Dutra,
Matthias Koeppe, Stanislav Moreinis, Gregory Pinto, and
Jianqiu Wu. Software for exact integration of polynomials
over polyhedra. ACM Communications in Computer
Algebra, 45(3/4):169–172, 2012.

[Sang et al., 2004] Tian Sang, Fahiem Bacchus, Paul Beame,
Henry A. Kautz, and Toniann Pitassi. Combining com-
ponent caching and clause learning for effective model
counting. In SAT, 2004.

[Sanner and Abbasnejad, 2012] Scott Sanner and Ehsan Ab-
basnejad. Symbolic variable elimination for discrete and
continuous graphical models. In AAAI, 2012.

[Sebastiani, 2007] Roberto Sebastiani. Lazy Satisfiability
Modulo Theories. Journal on Satisfiability, Boolean Mod-
eling and Computation, JSAT, 3(3-4):141–224, 2007.

[Shenoy and West, 2011] Prakash P. Shenoy and James C.
West. Inference in hybrid bayesian networks using mix-
tures of polynomials. International Journal of Approxi-
mate Reasoning, 52(5):641–657, 2011.

[Suciu et al., 2011] Dan Suciu, Dan Olteanu, Christopher
Ré, and Christoph Koch. Probabilistic databases. Syn-
thesis Lectures on Data Management, 3(2):1–180, 2011.

[Wang et al., 2014] Shenlong Wang, Alex Schwing, and
Raquel Urtasun. Efficient inference of continuous markov
random fields with polynomial potentials. In NIPS, 2014.

