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Abstract. The interactive decision making (IDM) methods exploit the
preference information from the decision maker during the optimization
task to guide the search towards favourite solutions. This work measures
the impact of inaccurate and contradictory preference information on the
quality of the solutions generated by the IDM methods. The investigation
is done in the context of the BC-EMO algorithm, a recently proposed
multi-objective genetic algorithm.

1 Introduction

Modeling real world problems often generates optimization tasks involving mul-
tiple and conflicting objectives. Because the objectives are in conflict, a solution
simultaneously optimizing all of them does not exist. The typical approach to the
multi-objective optimization problems (MOOPs) consists of searching a set of
trade-off solutions, called the Pareto-optimal set, for which any single objective
cannot be improved without compromising at least one of the other objectives.
Usually, the size of the Pareto-optimal set is large or infinite and the decision
maker (DM) cannot tackle the overflow of information generated when analyz-
ing it entirely. In this scenario, the interactive decision making (IDM) technique
comes to the rescue. It assumes that the optimization expert (or the optimization
software) cooperates with the DM. Through the interaction, the search process
can be directed towards the DM favorite Pareto-optimal solutions and only a
fraction of the Pareto-optimal set needs to be generated. Several IDM approaches
have been developed to aid the DM in identifying his preferred solution [4]. A re-
cent method is the Brain-Computer Evolutionary Multi-Objective Optimization
(BC-EMO) algorithm [1], a genetic algorithm that learns the preference infor-
mation of the decision maker (formalized as a value function) by the feedback
received when the DM evaluates tentative solutions. Based on this feedback, the
value function is refined, and it is used to modify the population of the genetic
algorithm.

In the experiments presented in [1], the preference information of the DM is
assumed accurate: the algorithm is tested using an ideal user providing consistent
and correct answers to each question generated during the interactive process.



However, in many concrete applications assuming non-contradictory and consis-
tent feedback from the decision maker is rather unrealistic. An important issue
is therefore studying the quality of the solutions generated by an IDM algorithm
as a function of the accuracy of the preference information provided by the DM.
This contribution explores the robustness of the BC-EMO algorithm in two noisy
scenarios emulating possible inaccuracies in the DM feedback.

2 The BC-EMO algorithm

The goal of the BC-EMO algorithm consists of learning the non-dominated so-
lution preferred by the decision maker. To fulfill this scope, BC-EMO learns a
value function from the preference information provided by the DM by using the
support vector ranking, a supervised machine learning technique that learns to
rank the input data. Training examples consist of pairwise comparisons of non-
dominated solutions which are turned into ranking constraints for the learning
algorithm. No specific assumptions are made about the form of the DM value
function: BC-EMO has a tuning phase selecting the most appropriate kernel
(i.e., similarity measure) in order to best approximate the targets, allowing it
to learn an arbitrary value function provided enough data are available. Fur-
thermore, support vector ranking allows to effectively deal with noisy training
observations thanks to a regularization parameter C trading-off data fitting with
complexity of the learned model. This aspect motivates the analysis of the noise
robustness of BC-EMO performed in this contribution.

The learned value function is used to order the current population during the
selection phase of the BC-EMO algorithm, where a sub-population is selected for
reproduction on the basis of fitness (i.e., quality of the solutions). In particular,
the BC-EMO selection procedure consists of:

1. collecting the subset of non-dominated individuals in the population;

2. sorting them according to the learned value function;

3. appending to the sorted set the result of repeating the procedure on the
remaining dominated individuals.

The procedure is guaranteed to retain Pareto-optimality regardless of the
form of the learned value function. Any evolutionary multi-objective algorithm
(EMOA) that needs comparisons between candidate individuals can be equipped
with the BC-EMO selection procedure (replacing or integrating the original se-
lection procedure). Following [1] we focused on the NSGA-II [2] EMOA. The
overall BC-EMO approach consists of 3 steps:

1. initial search phase: the plain EMOA selected is run for a given number of
generations collecting the final population P1;

2. training phase: using P1 as initial population, a specific number of training
iterations are executed to learn the value function V by interacting with the
DM. The final population obtained (P2) is collected;



3. final search phase: the selected EMOA equipped with the BC-EMO selec-
tion procedure is run for a given number of generations, using P2 as initial
population and producing the final ordered population.

Each training iteration alternates a refinement phase, where the DM is queried
for feedback on candidate solutions and the value function is updated according
to such feedback, with a search phase, where the EMOA equipped with the BC-
EMO selection procedure is run for a given number of iterations. The training
phase is executed until the maximum number of training iterations or the desired
accuracy level are reached.

3 Experimental results

Incorrect preference information can be due to occasional inattention of the DM,
or by his embarrass when required to compare too similar solutions. To represent
these situations, two models of inaccurate preference information are considered:

1. the probability Pi of incorrect feedback from the DM is a constant value
γ ∈ (0, 0.3];

2. the probability Pi of incorrect feedback from the DM increases with the
similarity of the solutions to be compared.

In the second model, Pi = γ · 〈z, z′〉/
√

〈z, z〉 · 〈z′, z′〉 where z and z
′ are the

objective vectors of the solutions to be compared and γ is a constant value in
the range (0, 0.3].

We selected as a benchmark the DTLZ6 problem taken from [3], with the
following polynomial value function: 0.05 · z2z1 + 0.6 · z2

1
+ 0.38 · z2 + 0.23 · z1,

where z1 and z2 are the objectives to optimize. As shown in [1], this polynomial
value function maps the Pareto-optimal front to a non-linear and disconnected
surface for which a linear approximation fails to recover the desired solution. We
thus evaluate the ability of the BC-EMO algorithm to both correctly select an
appropriate non-linear kernel and learn the parameters of the resulting function
in a noisy scenario.

Fig. 1 contains the results obtained for the two models of noise we considered.
The performance of the algorithm is measured in terms of the approximation
error w.r.t. the gold standard solution (y-axis) in function of γ (x -axis). The
gold standard solution is obtained by guiding the algorithm with the true value
function. The results are the median of 100 runs of the BC-EMO algorithm
with a single training iteration. Different curves represent different numbers of
training examples. The regularization parameter C of the support vector ranking
was fixed to 1 in all experiments. Qualitatively similar results were obtained for
higher values of C, including the value of C = 100 employed in [1] in an unnoisy
scenario. Our aim here is to show a trend confirming the robustness of the
algorithm rather than boost its performance to the limit. It is straighforward to
include a fine tuning of the regularization parameter within the model selection
phase in order to adapt it to the problem at hand.
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Fig. 1: Learning curves for an increasing number of training examples observed for
the two models of inaccurate preference information. The y-axis reports the solution
quality, while the x -axis contains the values of γ.

The algorithm shows a similar behaviour for both noise models. As expected,
performance tend to degrade when increasing the amount of noise, while improv-
ing for an increasing number of training examples. However, they always remain
with 3% of the gold standard solution, which is the solution found by a linear
approximation of the value function in an unnoisy scenario (see [1]). Indeed more
than half of the times a linear kernel is incorrectly chosen when 5 or 10 noisy
training instances are provided. Results rapidly improve with a larger number
of examples, being basically insensitive to up to 30% of noise for 25 examples or
more.

These preliminary experimental results are promising: the performance of the
BC-EMO is robust in the presence of inaccurate preference information from the
DM in a non-linear setting. Future work includes testing more complex models
for the user value function and his uncertainty, modifying the learning phase in
order to account for realistic patterns of noise, and developing an active learning
strategy to minimize the required feedback.
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