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ABSTRACT

We propose a new recommendation system for service and prod-

uct bundling in the domain of telecommunication and multimedia.

Using this system, users can easily generate a combined service

plan that best suits their needs within a vast range of candidates.

The system exploits the recent constructive preference elicitation
framework, which allows us to flexibly model the exponentially

large domain of bundle offers as an implicitly defined set of vari-

ables and constraints. The user preferences are modeled by a utility

function estimated via coactive learning interaction, while itera-

tively generating high-utility recommendations through constraint

optimization. In this paper, we detail the structure of our system, as

well as the methodology and results of an empirical validation study

which involved more than 130 participants. The system turned out

to be highly usable with respect to both time and number of inter-

actions, and its outputs were found much more satisfactory than

those obtained with standard techniques used in the market.
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1 INTRODUCTION

Product and service bundling has always been a key selling point

in the telecommunication industry, as well as in many other sec-

tors [19, 20, 26, 30]. Bundles in the telco market consist in the com-

bination of several services such as mobile connectivity and broad-

band allocation, usually granted for a monthly payment. These

services are often marketed together with other multimedia and

entertainment services such as streaming TV, music, and storage

service subscriptions. Exploiting the recurrent structure of pay-

ments, electronic devices and other expensive products are also

often included in these offers to be paid in installments, supporting

customer retention. The standard approach used by Telco service

providers to market this kind of bundles is to build a handful of

pre-made plans to choose from, usually with little opportunity for

customization limited to the purchase of some extra feature or ser-

vice. A multitude of studies reveal, however, that customization

through product configuration increases customer satisfaction and

brand loyalty [7, 15, 37, 41]. However, configuring a complex prod-

uct from scratch is not an easy task, and requires a lot of domain ex-

pertise from the customer. Recommender systems can substantially

contribute to help non-expert users find their preferred solution

within the multitude of potential bundles.

The task of recommending personalized bundles of products

has been an active research subject over the last couple of decades,

addressed by data-driven approaches [2, 24, 48] and especially by

constraint-based recommendation systems [45]. Data-driven ap-

proaches use association rule mining combined with collaborative

information and similarity metrics to create bundles based on fre-

quently purchased item-sets [2, 24, 48]. These methods, however,

rely heavily on purchase data and cannot be used to explore the

combinatorial space of potential configurations and synthesize fully

personalized plans which combine purchase history, personal pref-

erences and company constraints. Constraint-based systems, on

the other hand, can easily encode the full domain implicitly as

a constraint satisfaction problem [17, 18, 45]. This allows to han-

dle hard constraints that the recommended bundles must satisfy,

such as compatibility among the items in the bundle, and soft con-
straints that encode user preferences, namely weighted formulas

that should be satisfied as much as possible [10, 47]. The function

obtained as the weighted sum of soft constraints is the utility of the

user, which ranks configurations according to the user preferences.
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This is the typical setting in which “conversational” recommender

systems are employed [44], and the utility function is learned via
user interaction in a process commonly known as preference elic-
itation [3–6, 9, 33]. Up until recently, however, constraint-based

recommenders were lacking a consistent and efficient preference

elicitation method, since state-of-the-art preference elicitation tech-

niques [23, 43] could not scale up to large combinatorial spaces

without incurring in severe performance issues [14, 39]. This pre-

vented constraint-based systems to really scale up in terms of cus-

tomization, personalization and usability. This problem was much

mitigated with the recent introduction of the constructive preference
elicitation framework [13].

Constructive preference elicitation combines the benefits of

constraint-based recommenders with those of online structured
prediction algorithms [1, 8]. In this setting, a prominent preference

learning framework is coactive learning [36]. Coactive learning is a

paradigm for estimating utility functions from weak user feedback,

in the form of “improvements” over proposed configurations. In

constructive preference elicitation, configurations are generated us-

ing a combinatorial optimization solver in which arbitrary domains

and constraints can be encoded, in much the same way as it is done

in standard constraint-based recommenders. Several variants of

this paradigm have been proposed, for handling different kinds of

user feedback, such as choice sets [14] and user critiques [38], as

well as for scaling up to very large combinatorial spaces [12] and

to jointly learn from multiple users [40].

While promising, research work on constructive preference elic-

itation has remained mainly theoretical with empirical evidence

provided only on simplified tasks and user simulations. In this pa-

per, we present a fully functional constructive recommendation

system, dubbed Smart Plan, for aiding users in finding the bundle

of telecom services and products which best fits their preferences.

The system was implemented as a web application and tested by

more than 130 real participants. Results show that, participants

who interacted with our constructive system ended up choosing

a satisfactory plan in almost all cases, while this was not true for

participants who interacted with a standard system that relied on a

fixed number of carefully designed but uneditable plans. Crucially,

our results also indicate that a constructive interaction interface,

which allows users to request specific changes to recommendations

they receive, is useless when it is not backed by a solver capable of

synthesizing novel plans.

The rest of the paper is organized as follows. Section 2 overviews

the related work, while Section 3 provides a review of coactive

learning for constructive preference elicitation. In Section 4 we

describe the structure of our system. Our empirical analysis is

discussed in Section 5, and conclusions are drawn in Section 6.

2 RELATEDWORK

The goal of our system is to generate bundles by exploring a con-

strained combinatorial space of possible configurations. This is

amenable to what is commonly known as a product configuration
process. Product configuration is a long standing problem in AI [27].

It consists of a step-by-step process in which the user chooses an

attribute of the object (which can assume several values) and sub-

sequently chooses the value she prefers for that attribute. The job

of a configurator system is to make sure that the chosen values

comply with a set of feasibility constraints defined over the at-

tributes. This process is advantageous for configuration tasks in

which the user is a domain expert (e.g. manufacturing processes).

In case the user is not a domain expert, like for telephone service

bundling, the configuration process may result too daunting [42].

Moreover, psychological studies [32] have shown that users adapt

their preferences while browsing for solutions, which is difficult to

achieve if users are only presented with sequences of choices on

single attributes. For this reason, in many cases reasoning in terms

of complete, feasible configurations might be a better option than

letting the user configure a product from scratch.

Constraint-based systems [17] are used to recommend complete

configurations of complex products that must meet certain require-

ments, both in terms of feasibility constraints and user preferences.

Service bundle recommendation has already been explored in the

context of constraint-based systems [45], also incorporating user

preferences as soft constraints [47] and in combination with utility

functions to rank feasible configurations [28, 46]. However, these

techniques typically lack a systematic way to elicit user feedback

and learn a utility model from it.

Preference elicitation [33] is a methodology for estimating a utility

model of the user preferences while recommending configurations

of progressively higher quality. Preference elicitation is an iterative

process in which the system makes recommendations to the user,

who in turn provides feedback. The most well known preference

models are multi-attribute utility functions, which express the util-

ity of a configuration in terms of its components [29]. These are

especially convenient to represent user preferences over combina-

torial configuration spaces, as in the case of configurable products

and bundles. The state-of-the-art techniques for preference elic-

itation are based on Bayesian estimation over the parameters of

the utility functions [23, 43]. These techniques, however, are very

computationally demanding and do not scale to truly combinato-

rial problems [39]. In order to overcome these limitations, a novel

framework called constructive preference elicitation [13, 39] has been
recently proposed by combining preference elicitation, structured-
output prediction [1] and combinatorial optimization.

In constructive preference elicitation, the utility model is learned

from noisy user feedback using an online structured learning algo-

rithm, while inference is addressed using a combinatorial optimiza-

tion solver. Constructive algorithms have been devised for handling

choice set feedback [14, 39], incorporating critiquing feedback [38],

and, most closely related to this work, coactive feedback [11, 12, 38].

Coactive learning [36] is an online structured prediction frame-

work for learning utility functions from weak user feedback. Coac-

tive learning is based on well known online learning algorithms [8,

34, 49] and can learn from noisy and imperfect user feedback. The

coactive interaction consists in an iterative process in which the

algorithm suggests the best object according to its current utility

estimate, and the user provides an “improvement” of the recom-

mended object. While coactive learning was primarily conceived

for optimizing rankings from implicit feedback [35], in the context

of constructive preference elicitation it was adapted to learn over

product configurations from a combination of explicit and implicit

feedback. Coactive learning has also been extended in several ways,

such as learning and making predictions from a combination of
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an individual and a global model of the users preferences [22] or

speeding up inference by relying on locally optimal solutions with-

out giving up theoretical guarantees [21]. Being based on coactive

learning, our system can be readily extended in all these directions.

3 THE LEARNING ALGORITHM

In this section we briefly revise the constructive preference elicita-

tion and coactive learning frameworks, laying down the founda-

tions on top of which our system is built.

The goal of our constructive recommendation system is to learn

to generate high-utility objects for the user. The most general

formulation of utility considered in this framework is a function

u : X ×Y → R, where X is a set of contexts, while Y is a space of

output objects the user chooses from. The context represents here

relevant known information which affects the utility of the outputs,

e.g. user profile information when recommending jobs, or content

of the fridge when suggesting purchases at the supermarket.

Constructive preference elicitation deals with structured objects,

i.e. objects formed by several components and subject to several

feasibility constraints. This is the typical case in product config-

uration: objects are products with many components which can

be composed in several ways, modulo incompatibilities or other

constraints. Natural examples of structured objects handled by con-

structive systems are configurable products like personal computers

and furniture arrangements [11], or even trip plans [38] and train-

ing schedules [12]. Telephone plans fit this description too: they

are composed of several variables, such as the amount of available

GB of data traffic for the mobile connection, the list of mobile app

or entertainment services associated with the plan (TV on demand,

music streaming, etc.), and the devices sold with the plan (smart-

phone, tablet, etc.). Feasibility constraints include, for instance, no

music streaming app without at least one GB of mobile data traffic.

To recommend an optimal object in this setting, we need to

be able to learn a good utility model of the user preferences and

then predict the best structured object y ∈ Y for the user in some

context x ∈ X according to the learned model. We cast this problem

into a structured-output prediction task [1], in which supervision

is acquired through user interaction. A user interacts with the

algorithm in an iterative fashion. At each iteration the algorithm

suggests an object to the user and the user provides some feedback,

which the algorithm uses to update the current utility model. While

many types of feedback and update schemas can be employed,

our system is based on the interaction schema from the coactive

learning framework [36]. Algorithm 1 shows a generic algorithm

based on the coactive interaction schema. In coactive learning,

throughout the iterations t ≤ T , the algorithm keeps a utility model

ut (x ,y) of the form ⟨wt ,ϕ(x ,y)⟩, where ϕ : X × Y → Rd is a

function mapping contexts and objects to d-dimensional feature

vectors andwt ∈ R
d
is a vector of parameters to be learned. The

algorithm starts by initializing the weightsw1 to a reasonable guess

(line 1). This could be achieved by, e.g. training the weights over

generic preference data from other users or setting them to some

reasonable values given the profiling information of the user (see

Section 4.2 for an actual implementation of this initialization mode).

At each iteration t , the algorithm receives a context xt ∈ X (line 3),

which could be external information available at prediction time

Algorithm 1 A generic coactive learning algorithm [36].

1: Initializew1

2: for t = 1, . . . ,T do

3: Receive user context xt
4: yt ← argmaxy∈Y(xt ) ⟨wt ,ϕ(xt ,y)⟩
5: Receive improvement ȳt from the user

6: wt+1 ← ΠB (wt − ηt (ϕ(xt ,yt ) − ϕ(xt , ȳt )))

(e.g. the content of the fridge) or some user input (e.g. the type of

dish to be prepared). This is the most general type of context, and

accounts for simpler cases like context-independent utility (xt = ∅
for all t ) and fixed context (xt = x1 for all t ).

Based on the current utility estimateut and on the context xt the
algorithm “predicts” an objectyt by maximizing the utilityut (xt ,y)
over the spaceY(xt ) ⊆ Y (line 4). In the case of generic structured

objects, composed of both integer and continuous variables and sub-

ject to arbitrary constraints, this inference procedure is carried out

by casting the optimization problem into a mixed integer program

(MIP). By restricting the features ϕ and the feasibility constraints

over Y(xt ) to be linear in the variables of y the problem becomes

a mixed integer linear program (MILP). This type of problems are

well studied in the literature and off-the-shelf solvers can scale to

problems with several hundred variables.

The predicted object yt is recommended to the user. In turn

the user replies with feedback in the form of an “improvement”

over yt (line 5), i.e. a new object ȳt ∈ Y that is (even slightly)

preferred toyt by the user. Note that it is not required to get explicit
improvements from the users but instead it is possible to extract the

improved object ȳt from implicit user feedback [36]. While working

with implicit feedback makes the improvement noisier, coactive

algorithms are still able to learn accurate models, which makes this

framework very flexible.

In the context of preference elicitation for configurable objects,

we usually get explicit feedback, which may be either direct or

indirect. The former is collected by letting the user directly modify a

component of the object (e.g. by adding a service to the phone plan);

the latter, instead, is given by an indirect change to some feature

of the object (e.g. by telling the system to decrease the price). This

second case is the one used in our system (we providemore details in

Section 4). After receiving the improvement ȳt , the system can use

the ranking pair (yt , ȳt ) to update the current model. The algorithm

takes a gradient step in the direction minimizing the ranking loss

(i.e. the difference in utility between recommended and improved

objects), with learning rate ηt ∈ R (typically decreasing with t ). In
order to regularize the learned model, the updated weight vector

can then be projected onto a convex set B ⊆ Rd using a projection

operator ΠB(θ ) = argminw ∈B ∥w − θ ∥. The set B is typically a ℓ2
d-dimensional ball of a given radius, or alternatively an ℓ1 ball can

be used to encourage sparsification of the weights [16].

For simplicity of exposition, the algorithm terminates after a

predefined number of iterationsT . In a real setting, the user decides

when to stop the interaction according to her satisfaction with the

recommended configuration. Accordingly, this is the criterion we

used in our experiments with real users.
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Mobile Connectivity

Gigabytes [0, 2, 4, 6, . . . ]
Minutes [0, 500, 1000, 1500, 2000, ∞]

Landline

Internet landline [None, ADSL, Broadband]
Phone landline [None, Pay-per-minute, Unlimited]

Multimedia

TV on demand [Netflix, Infinity TV, . . . ]
Sky [Sky Tv, Sky Sport, . . . ]
Music [Spotify, Apple Music, . . . ]
Apps & Games [Audible, Playstation Plus, . . . ]

Devices

Smartphones [iPhone 8, Samsung Galaxy S8, . . . ]
Tablet [iPad Pro 10, Galaxy Tab S2, . . . ]
TV [Samsung TV 28", 4K 43", . . . ]
Laptops [Macbook Air 13", . . . ]

Table 1: Summary of the structure of the recommended tele-

phone plans. Left column: component names. Right column:

outline of the possible values for each component.

4 THE SMART PLAN SYSTEM

In this section we describe the Smart Plan system, a constructive rec-

ommender system for integrated telephone plans based on coactive

learning. The system recommends configurations y ∈ Y formed

of several components. The components are organized into four

groups: [i] Mobile Connectivity services; [ii] Landline services; [iii]

Multimedia (apps and services for entertainment and multimedia

content provisioning such as TV streaming, music, etc.); [iv] Devices

(such as smartphones, tablets, etc. paid in monthly installments).

Table 1 summarizes the groups and their components, outlining the

range of possible values for each component. In total, there are 12

basic components, each taking on average about 5 possible values,

which combined form a number of possible configurations in the

order of 5
12 ≈ 10

9
. The feasible space Y is a subset of the full set

of combinations that is determined by hard constraints over the

attributes. For example a landline internet connection is needed to

get the pay TV service, or a mobile subscription (either voice min-

utes or GB of data traffic) is needed to include a smartphone in the

plan. Besides the basic components, the plans also contain several

derived attributes, such as the total price of the plan (computed as

a function of the included components), or the amount of monthly

payments due for the installments of the devices included in the

plan. At the beginning of the interaction, the system asks the user

to select one out of four categories of plans. The categories are: [i]
“Young” (plans for users under 30); [ii] “Family” (plans for families

with children); [iii] “Business” (high-end plans for business); [iv]

“Flex” (for everybody else). The user choice of category becomes

the context x ∈ X for the full elicitation process
1
. The category x

may further alter the feasible space Y(x) ⊆ Y of plans, e.g. prices

of certain services are lower for the “Young” category.

The feature vector ϕ includes about 160 features describing the

components of the plan and their interconnections, for instance

several features describing different ranges of minutes amount

1
Henceforth, the terms “category” and “context” are used interchangeably.

(e.g. minutes ≤ {200, 500, 1000, . . . }), or a feature encoding the

difference between the final price and the price payed after the

installments due for the devices. A complete description of the

components, constraints and features is given in the supplementary

material.

The system is implemented as a web application composed of:

[i] a web interface with which users interact; [ii] a web service

connected to a learning back-end which is in charge of generating

recommendations and collecting data.

4.1 The user interface

The user interface of the system is a web page alike to that shown

in Figure 1. The page shows one recommended plan at the time, dis-

played as a grid containing all of its components. The grid separates

the various groups of components and arranges the various com-

ponents within the groups, showing placeholders for components

that are not present in the given plan. For each group, the sub-total

price is displayed. For the device group, the amount of monthly

payments due for the devices included in the plan is shown as well.

The total price of the plan is reported on the right side of the grid.

A discount is sometimes applied to the total price depending on the

number and type of services in the configuration. Additional infor-

mation on the different components is displayed using tooltips and

overlays on mouse over. The user can interact with the system via

the buttons shown in the right part of the grid. At any given time

the user can: [i] choose the currently displayed plan; [ii] suggest

some changes to the current plan and request an new one; [iii] exit

the session without choosing any plan. The system starts with an

initial recommendation depending on the category chosen at the

beginning and then computes new recommendations every time

the user suggests changes. The plans in the history are numbered

and the user can navigate the entire history of recommendations

using the appropriate buttons (top right), and focus on any of them

(and not only the last one) for the interaction. In any case, novel

recommendations will be enqueued as the last plan in the history.

The right screenshot in Figure 1 shows the interface once the

“Suggest changes” button has been pressed. In this state, several

toggle buttons appear underneath the components that can be

changed. In the case of numerical values and ordinal values, such

as the amount of gigabytes for the mobile connection or the pro-

posed monthly price of the plan, the user can suggest to increase

or decrease the value, or ask it to be left unchanged. For categorical

components, such as the multimedia services and devices, the user

can suggest to add a service if it is not present, or, if it is present,

the user can suggest to remove it, change it or keep it as it is. As the

system needs to make trade-offs between the current configuration,

the constraints of the domain, the current preference model and

the user feedback, the user suggestion of changing one component

may result in a change of other components as well. For instance, if

the user asks to add more gigabytes to the plan and asks for a lower

price, the system will need to remove some of the other services to

accommodate this opposite feedback. This is the reason why we

also included the “equal” button, with which the user can suggest

which components should not change (e.g. because they are con-

sidered important) when computing these trade-offs. In general,

however, we warn the user (via an overlay) to keep the number

166



No More Ready-made Deals:
Constructive Recommendation for Telco Service Bundling RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

Figure 1: Two screenshots of theweb interface of our system.On the left, a screenshot of the view of a recommended planwhile

navigating throughout the recommendationhistory. On the right, a screenshot showing the interface the user can interactwith

when selecting the changes to suggest to the system. (Best viewed in color.)

of suggestions per iteration as low as possible in order to increase

the chance of having them satisfied, reminding her that there is no

limit to the number of plans she can require from the system.

4.2 The learning subsystem

This component of the system is in charge of providing recommen-

dations, keeping track of the user feedback and updating the user

utility model accordingly. This subsystem is further divided into the

actual learning algorithm, and a web service API, that intermediates

between the constraint solver used to infer new recommendations,

a database storing the collected data and the user interface. Here we

outline the learning algorithm used in the Smart Plan system, while

a more in depth description of the full system implementation is

given in the supplementary material.

The learning algorithm used in our system (Algorithm 2) is a

slightly adapted version of the coactive learning one (Algorithm 1)

to accommodate the type of feedback received by our user interface.

At the beginning the algorithm receives the category x ∈ X of

user choice. Based on the category x , the algorithm sets the initial

weightsw0 = wx and the initial recommendationy0 = yx . Selecting
a meaningful starting point for both the initial configuration and

the initial weight vector can drastically speed-up the elicitation

process. In principle, initial configurations may be estimated from

generic data of previous users if available, using e.g. collaborative

or content-based techniques. We did not have previous data on this

task, so, with the help of a domain expert, we identified four realistic

initial configurations yx ∈ Y(x), one for each category x . The four
initial configurations attempt to address the need of a prototypical

user who chooses a certain category. For instance, a user choosing

the category “young” would probably need more mobile data traffic

than a user choosing the “family” one, probably more interested

in more voice minutes and landline services (more details on the

initial plans yx can be found in the supplementary material). The

initial weightswx are set to argmaxw ∈B ⟨w,ϕ(x ,yx )⟩, i.e. the value
for which yx is the highest scoring configuration for the category x .
The algorithm also initializes a listH where the plans recommended

at each iteration will be stored.

At each iteration, the algorithm first presents to the user the plan

yt = ȳt−1 generated at the end of the previous iteration (which,

except for the first iteration, is the one trying to meet user feed-

back on the previous recommendation) and stores it in the list

H . If the user is unsatisfied by the current recommendation (as

well as all previous ones) and decides to quit the interaction, the

algorithm stops without recommending any plan. Otherwise, the

user chooses a plan from the list H and can either accept it (the

algorithm stops and returns it as the final recommendation) or

suggest some changes. In the latter case, the algorithm updates its

weight vector based on the plan selected and the current history.

Indeed, the user selection of some yk from the recommendation

history as the plan on which to provide new suggestions is already

an implicit source of feedback. Intuitively, if the user chose to im-

prove the last suggested plan (i.e. k = t ), this implicitly tells us

that the last performed improvement was most likely going in the

right direction, and thus we can safely update the weights with the

ranking pair (yt−1,yt ) (same as in Algorithm 1 but delayed of one

iteration). If, instead, k < t , it means that the user preferred to “start

over” from some previous recommendation yk , probably because

the recommendations yi , for k < i ≤ t , turned out to be farther out

from the user desiderata than yk . This implicit feedback provides

the ranking pairs (yi ,yk ) for k < i ≤ t , exploited to update the

weights (line 13). Preliminary experiments showed that this is a

better choice than just adding the single pair (yt ,yk ).
Finally, the user provides feedback on the chosen plan yk , and a

refined plan accounting for such a feedback is generated. As men-

tioned in Section 3, the user feedback is not a direct manipulation of

the recommended plan but rather a set of “suggestions” on the com-

ponents that need to be changed or should be kept equal, leaving

the system the possibility of adjusting the remaining components

to accommodate these suggestions. The improvement ȳt is then
obtained by finding a feasible plan satisfying the suggestions of the

user as much as possible. In order to formalize this search problem,

plans are encoded in a form that allows to test the satisfaction of

the different types of suggestions the user can provide. A plan yk is

thus represented in terms of two component vectors, φn (yk ) and a

φc (yk )
2
. The first contains quantitative information for numerical

2
Note that these vectors differ from the feature vector ϕ on which the utility function

is defined, although they largely overlap in practice. See the supplementary material

for details.
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Algorithm 2 The learning algorithm of the Smart Plan system.

1: User selects category x ∈ X
2: Initializew0 and y0 = ȳ0 according to x
3: H ← empty list

4: for t = 1, 2, . . . do

5: Recommend yt = ȳt−1

6: Append yt intoH
7: if User quits the interaction then

8: return ∅
9: User selects plan yk ∈ H , k ≤ t
10: if User accepts yk then

11: return yk
12: for i = k − 1, . . . , t do
13: wt ← ΠB (wt−1 − ηt (ϕ(x ,yi ) − ϕ(x ,yk )))

14: Receive feedback y=t , y
,
t , y
±
t on plan yk

15: ȳt ← improve(x ,wt ,yk ,y
=
t , y
,
t , y
±
t )

or ordinal attributes (e.g. number of minutes or gigabytes) and pres-

ence/absence information for categorical ones (e.g. TV Streaming,

Laptop). The second contains the one-hot encoding of the categori-

cal attributes (e.g. which TV Streaming among the different options

available)
3
.

The user suggestions are gathered into three feedback vectors

y±t ,y
=
t ,y
,
t . The first feedback vectory

±
t has the same size asφn (yk ),

and contains 1 and −1 for components the user has requested to

respectively increase (by pressing the “plus” button) and decrease

(by pressing the “minus” button) in ȳt with respect to yk , and 0

otherwise. The second vectory=t has again the same size asφn (yk ),
and contains for each component the value 1 if the user requested to

keep the value unchanged in ȳt with respect to yk (by pressing the

“equal” button), and 0 otherwise. The third vectory,t has instead the

same size as φc (yk ), and contains 1 on components for which the

user has requested to be changed in value (by pressing the “change”

button) in ȳt with respect to their value assumed in yk . In other

words, if the y,t contains 1 for some component, then the new plan

ȳt should contain a different value (not specified which) for that

component with respect to yk .
The improvement ȳt is obtained by solving an optimization

problem that attempts to maximize a “feedback” scoreGt (ȳt ), i.e. a
function that encodes how well the user suggestion are satisfied.

The new plan however should also be of high utility according to

the current utility model ut and should not be too distant from yk ,
in order to make the transition from one plan to the next one as

smooth as possible. The improve function (line 15) seeks a plan

ȳt trading-off these aspects, by solving the following optimization

problem:

ȳt = argmax

y∈Y(x )
Gt (y) + λ1 ut (x ,y) − λ2 ∥ϕ(x ,y) − ϕ(x ,yk )∥1 (1)

Gt (y) = λ3⟨y
±
t ,δ

n
t ⟩ − λ4⟨y

=
t , |δ

n
t |⟩ + λ5∥y

,
t ◦ δ

c
t ∥0

δnt = φn (y) −φn (yk ) δct = φc (y) −φc (yk )

3
The vectors φn (yk ) and φc (yk ) also contain some more elaborate features, such

as the price range and the smartphone category. More details are provided in the

supplementary material.

The above optimization problem maximizes a combination of: [i]

the utility of y according to the current model ut (x ,y); [ii] the
(negated) ℓ1 distance between y and the selected plan yk (in feature

space); [iii] the feedback score functionGt (y) computing howmuch

y meets user suggestions. The function Gt (y) is itself a combina-

tion of: [i] the amount ⟨y±t ,δ
n
t ⟩ of changes that go in the same

direction with respect to the user suggestion (increase if user asked

to increase and viceversa); [ii] the number ⟨y=t , |δ
n
t |⟩ of compo-

nents that should remain equal but they have not; [iii] the number

∥y,t ◦δ
c
t ∥0 of categorical components that changed according to the

user request. In the above formula: |y | denotes the element-wise

absolute value; ◦ denotes the Hadamard product (element-wise

product); and ∥·∥0 denotes the ℓ0 norm (number of non-zero el-

ements). The parameters λ1, . . . , λ5 are real coefficients defining

the relative importance of each component of the function being

maximized. These coefficients, as well as the learning rate ηt , were
chosen manually among a set of predefined values, validating the

quality of the recommendations on a pilot set of users (beta testers

which are not included among the real users involved in the study

described in Section 5). The final implementation used a learning

rate ηt =
1

t 0.8 with a projection onto a ℓ2 ball. The learning rate

decreases rather quickly because, in this particular setting, feed-

back given in the early iterations is more important than finer

adjustments at later iterations when most of the users already had

a rough idea in mind of what the final plan should look like. The

parameters λ1, . . . , λ5 were set so that the feedback score, primarily

the y±t component, had the highest weight. Furthermore, a slightly

higher weight was given to the distance ∥ϕ(x , ȳt )−ϕ(x ,yk )∥1 with
respect to the utility ut (x , ȳt ), so that not too many components

would change between yk and ȳt , thus ensuring a smooth enough

transition between plans.

Regarding the implementation, we used the MiniZinc constraint

programming language as modeling platform [31]. The underlying

constraint solver used was Gurobi [25]. Concerning timing, prelim-

inary experiments showed that inference and learning steps took

on average 0.21 seconds per iteration using Gurobi on a 2.8 GHz

Intel Xeon CPU with 8 cores and 32 GiB of RAM. This time mag-

nitude makes the user interaction in the practical implementation

comfortable and without delays.

5 EMPIRICAL VALIDATION

This section describes the empirical validation of the system through

an experiment with real participants. The supplementary material

also contains a batch of preliminary experiments made with simu-

lated users in order to assess the convergence rate of the algorithm

when interacting with users of different informativeness, as done in

previous works on constructive preference elicitation [11, 12, 38].

In order to evaluate the usefulness of our constructive approach,

we compared it with two alternative versions of the system. The

first mimics the standard approach of telecommunication compa-

nies, which consists of hand-crafting a pool of integrated plans

tailored for different categories of users, and let them to choose

their preferred plan in the pool. The second employs the very same

interaction modality of our constructive approach, but when build-

ing the recommendation in response to the suggestions from the

user, it is forced to pick one of the preset plans in the pool. The
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Figure 2: Statistics concerning the interactionwith the three

(PP, PC, CC) versions of the system. From left to right: [i]

the percentage of participants who found a plan satisfying

enough to choose it; [ii] the average number of plans visu-

alized (only for participants who chose a plan); [iii] the av-

erage duration (in minutes) of the interaction with the sys-

tem (only for participants who chose a plan). Top bars indi-

cate significant comparisons (*=p<.05 and **=p<.01, adjusted
standardized residuals post-hoc analysis for [i], Tukey post-

hoc tests for [ii] and [iii]). Best viewed in color.

rationale behind the inclusion of this third version of the system

is to evaluate the relative importance of the constructive inter-

face versus the constructive plan generation in determining the

success of the interaction and the user’s satisfaction. In what fol-

lows, we refer to our constructive approach as CC (standing for

“constructive-constructive”), while the two alternative approaches

as PP (“pool-pool”) and PC (“pool-constructive”), respectively.

5.1 Stimuli

In the CC version of the system, the recommendations were se-

lected from the full configuration space as described in Sections 4.

In the PP version, the recommendations were selected from a prede-

fined pool. The pool was created by reviewing currently available

telco companies offers and interacting with a domain expert. This

process resulted in 65 different plans, divided into a set of sub-pools

Px ⊂ Y of approximately equal size for each of the “Young”, “Fam-

ily”, “Business”, and “Flex” categories x (see Section 4). Note that,

albeit very small if compared to the size of the configuration space,

the pool is still substantially larger than those typically provided

by telco companies. Finally, in the PC version, the algorithm learnt

a model of the user preferences as for the fully constructive ver-

sion, but recommendations were selected from the same predefined

pool of the PP version. However, while in PC version the full pool

was used for inference, in the PP version only the sub-pool associ-

ated to the chosen category was used, to make the choice not too

overwhelming for the user.

5.2 Participants

A sample of 157 adults was recruited for the experiment. Participa-

tion was anonymous and on a voluntary basis. Those who aban-

doned the session or did not visualized at least two recommenda-

tions (15% of the total) were excluded, leaving us with 134 partici-

pants. Fifty-eight percent of them were male, the average age was

32.7 years (SD 10.42).

5.3 Procedure

The experiment was performed online, throughout a web page

compatible with any widely used web browser. Participants were

explicitly informed that the experiment was only for scientific

purposes and that the plans were not associated to any real offer.

However, they were asked to behave as if they really had to choose

a plan to purchase.

A between-subjects design was employed: participants were ran-

domly assigned to one of three groups, each interacting with a

different version (CC, PP or PC) of the recommender. More specifi-

cally, 34% were presented with the PP, 33% with the PC, and 33%

with the CC version of the system. Participants in all groups had

first to select the category of plans they were most interested in.

The system used the information about the category to suggest an

appropriate initial recommendation y0 (see Section 4.2). In the CC

and PC versions of the system, this information was also used to

initialize the weight vector w0, whereas in the PP version of the

system the category was used to select the pool Px to be presented

(in a randomized order) to participants.

Participants could spend as much time as they needed to assess

each recommended plan. They could then suggest modifications to

the plan (for PC and CC versions only, as outlined in Section 4.1),

choose the plan, or decide to conclude the experimental session

without choosing any plan (or even to leave the test simply by

closing the browser window). As described in Section 4.1, in all

the versions of the system, participants were free to navigate the

full history of recommendations by going back and forth between

plans. (Specific instructions on how to interact with the specific

version of the system were provided by means of a video tutorial

before the start of the experiment.) Finally, once participants had

chosen a plan or decided to leave the experimental session without

choosing any, they were presented with a small questionnaire. For

all participants, this included questions about how pleasant and

tiring the interaction with the system had been on a scale ranging

from 0 (= “completely disagree”) to 5 (= “completely agree”). Other

questions depended on the version of system and on whether the

user chose a plan or left without choosing any. All participants in

the PC and CC versions were also asked whether they had found

the plans proposed by the system of growing interest, while all

participants who chose a plan were asked how much they were

satisfied with it (again from 0 to 5). At the very end, participants

were invited to provide minor demographic information (i.e., their

age and gender).

5.4 Results

Participants who interacted with the three (PP, PC, and CC) ver-

sions of the system were not significantly different by gender

(χ2
(2)=4.334, p=.114), age (one-way ANOVA, F (2,120)=.617, p=.541),
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Pleasant

interaction

Tiring

interaction

Increasing

interest

Satisfaction

degree

PP 3.79 1.07 – 3.54

PC 2.95 2.40 1.51 3.03

CC 3.44 1.79 3.02 3.34

Table 2: Participants’ average answers to the final questions

in the three (PP, PC, CC) system versions. Value range from

0 to 5. From left to right: [i] how pleasant the interaction

with the system was; [ii] how tiring the interaction with the

system was; [iii] (only for participants in the PC and CC

versions) whether the plans proposed by the system were

of growing interest; [iv] (only for participants who chose a

plan) how much the chosen plan was considered satisfying.

and possession of a phone plan (χ2
(2)=.628, p=.731). They did not

significantly differ also in their choice of the category of the plan

(χ2
(6)=3.763, p=.709). As a consequence, they can be considered

fully suitable to be compared in the experiment. Overall, the cate-

gories “flex”, “young”, ‘family”, and “business” were chosen by 31%,

45%, 18%, and 6% of the participants, respectively.

As shown in Figure 2, the percentage of participants who ended

their interaction with the system successfully by choosing a plan

was significantly different in the three groups (χ2
(2)=15.106,p<.001).

In particular, while almost all participants (95%) who interacted

with the CC version of the system found a plan that they liked,

the same held only for a bit more than half of those who inter-

acted with the other two versions (63% and 66% for PP and PC,

respectively). The difference between the former and the latter is

statistically significant (adjusted standardized residuals post-hoc

analysis, p<.01).
Before making their choice, participants in the three groups visu-

alized a different number of plans (one-way ANOVA, F (2,97)=6.474,
p<.01). In particular, participants who interactedwith the PP version
of the system visualized a greater number of plans than participants

who interacted with the CC version (Tukey post-hoc test, p<.01).
This is not entirely surprising since participants who interacted

with the PP version of the system could not suggest themselves

a new plan, but had only the possibility to explore the available

plans.

Participants in the three groups who chose a plan also differed

with regards to the duration of their overall interaction with the

system (one-way ANOVA, F (2,97)=4.622, p<.05). This was greater
for participants who interacted with the PC version of the system

than participants who interacted with the PP and CC versions

(Tukey post-hoc tests, p<.05), while participants in the latter two

groups did not differ between each other (Tukey post-hoc test,

p=.935). Such a result indicates that the PC version of the systemwas

especially time-consuming, while the CC version was comparable

to the PP one.

The average answers to the final questions are reported in Table 2.

Unsurprisingly, the three versions of the system have not been rated

as equally enjoyable or tiring (one-way ANOVAs, F (2,126)=5.928,
p<.01, and F (2,126)=8.703, p<.01, respectively). More specifically,

Tuckey post-hoc tests revealed that interacting with the PC version

of the system was considered as less pleasant (<.01) and more tir-

ing (p<.01) than interacting with the PP version, while there were

no significant differences between PC and CC versions (p=.33 and
p=.06, respectively). This result indicates that combining a construc-

tive interface with a standard search over a fixed pool of candidates

is not a good strategy, since a restricted number of options cannot

typically accommodate the modifications suggested by the users.

Moreover, it shows that the interaction with the CC version of the

system, although more engaging, is not perceived as less pleasant

or more tiring than the interaction with the PP one.

Participants who interacted with the CC version of the system

found the plans progressively suggested to them of growing interest

more than they did participants who interacted with the PC version

(Independent t-test, t (84)=5.972, p<.01). Yet again, this suggests that
participants’ appreciation of the interaction depends on having a

constructive plan generator rather than a constructive interface.

Finally, there were not significant differences in the satisfac-

tion with the chosen plan between the three groups (F (2,95)=1.911,
p=.154).

6 CONCLUSION

In this paper, we presented Smart Plan, a novel type of recom-

mender system for product and service bundling in the telecom-

munication and multimedia domain. Rather than presenting the

user a fixed set of carefully designed but uneditable plans to choose

from, our system leverages the constructive preference elicitation

framework with coactive learning to synthesize progressively bet-

ter plans while interacting with the user. An empirical validation

with real participants showed that when interacting with Smart

Plan, participants ended up choosing a plan almost in all cases,

much more often than when having to select from a fixed pool

of candidates, regardless of the interface used to explore the pool.

Interestingly, the empirical results also show that the satisfaction

degree does not differ significantly across different systems. This

might be highlight either a limitation of the method in providing

better recommendations than the others (even if providing satisfac-

tory recommendation more often), or a stronger correlation of the

satisfaction degree with the plan itself rather than the process for

acquiring it. A more in depth analysis is required to better assess the

impact of the recommendation process on the satisfaction degree.

To the best of our knowledge, this is the first system of its kind

and could contribute to a paradigm shift in the way telco offers are

marketed to the public. Furthermore, the machine learning method-

ology underlying our system can be straightforwardly applied to

many other domains, such as finance, banking, or insurance, just

to mention a few. The chances for improvement are endless. In

terms of user interaction, additional forms of user feedback can

be introduced, such as choice set [14] or critiquing [38]. In terms

of modeling, components of the plans, features and initial plans,

which are currently pre-determined according to domain expertise,

can be adapted based on customers’ usage trends. Note that this

can be seen as a form of domain learning, where the analysis of
previous customers’ behavior not only allows to provide more ap-

propriate suggestions to new ones (e.g., better initial plans), but can

also guide the refinement of the space of feasible configurations.
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