
Optimizing Delegation Between Human and AI
Collaborative Agents⋆

Andrew Fuchs1,2[0000−0001−7191−8781], Andrea Passarella2[0000−0002−1694−612X],
and Marco Conti2[0000−0003−4097−4064]

1 Department of Computer Science, Università di Pisa
2 Institute for Informatics and Telematics (IIT), National Research Council (CNR)

andrew.fuchs@phd.unipi.it

Abstract. In the context of humans operating with artificial or au-
tonomous agents in a hybrid team, it is essential to accurately identify
when to authorize those team members to perform actions. Given past
examples where humans and autonomous systems can either succeed or
fail at tasks, we seek to train a delegating manager agent to make del-
egation decisions with respect to these potential performance deficien-
cies. Additionally, we cannot always expect the various agents to operate
within the same underlying model of the environment. It is possible to
encounter cases where the actions and transitions would vary between
agents. Therefore, our framework provides a manager model which learns
through observations of team performance without restricting agents to
matching dynamics. Our results show our manager learns to perform
delegation decisions with teams of agents operating under differing rep-
resentations of the environment, significantly outperforming alternative
methods to manage the team.

Keywords: Reinforcement Learning · Markov Decision Process · Dele-
gation · Learning to defer · Hybrid Decision-making

1 Introduction

Assuming a context with humans working directly in collaboration with au-
tonomous/artificial agents, it is essential to enable a team dynamic eliciting the
best combined performance or reduce agent-specific costs. For example, think
of an autonomous car, where a human driver or an AI agent can take decisions
on the next driving action. It is well known [1, 18] that neither the human nor
the agent is always the best choice, as either can make mistakes depending on
the driving context. Therefore, it is of utmost importance to design a delega-
tion policy deciding, at any point in time, who between the human driver and
the AI agent should operate the car. More specifically, a reasonable goal is to
⋆ This work was partially supported by the CHIST-ERA-19-XAI010 SAI project. M.

Conti’s and A. Passarella’s work was partly funded by the PNRR - M4C2 - Inves-
timento 1.3, Partenariato Esteso PE00000013 - "FAIR" funded by the European
Commission under the NextGeneration EU programme.

2 A. Fuchs et al.

identify how and when to enable agent actions to maximize overall team perfor-
mance while also considering any costs when an agent is operating. Of course,
the definition of performance will vary with each application, but the need for
performance will not. As such, we investigate a method for guiding delegation
decisions from the perspective of a managing authority which selects the agent
who chooses the action(s) the team will take in their shared current state.

With the emergence of a hybrid team comprised of human and artificial
agents, it is essential we provide oversight or imbue the agents with an ability to
identify the key performer in a given context. To this end, we define and train
the model for a Reinforcement Learning (RL) based manager which identifies
desirable delegation decisions given context and knowledge regarding agent per-
formance. To ensure a more realistic team dynamic, we assume the manager
is not directly observing the individual actions of the agents, but rather that
the manager must learn to delegate strictly by learning an association between
agents, states, delegations, and outcomes.

In this paradigm, such a manager will allow for behavior learning through
indirect observations of agents, with those observations being without any un-
fair access to private or domain-specific knowledge. In addition, this approach
reduces dependencies between the model through which the agents learn how to
behave, and that through which the manager learns how to delegate. With this
approach, we will show that our manager can learn a suitable policy. Further,
the results demonstrate how the learned policies properly align with the reward
function, and how the manager’s performance exceeds that of relevant reference
alternatives.

In the paper we define a learning model for the manager that can be cast to
a well-formulated Reinforcement Learning instance based on a Markov Decision
Problem (MDP, see Section 2). Without loss of generality, we assume that both
the human and the AI agent can be modeled through their own MDP, whose
specific actions and policies for transition are independent from each other, and
not under the control of the manager. The manager is thus modeled through a
separate MDP, whose policy we show how to optimize, based on the underlying
policies of the individual agents. This allows us to analytically define optimal
policies for the manager, that can be learned according to standard RL ma-
chinery. This is quite important, as we demonstrate the possibility of formal
optimization of the problem addressed.

In addition, we highlight two further contributions of this work, which distin-
guish our work from prior literature (analyzed in Section 3). First, our inclusion
of a manager delegating between agents moving through the same state space
with different actions and transitions is a novel conceptualization. The clos-
est alignment to this view is the use of different options (defined in Section 2)
for moving inside a unique MDP, and their corresponding option policies. In
this case, a unique MDP is split into several sub-problems which are managed
through a separate learning problem. However, this does not consider managing
multiple MDPs for solving a given problem, as in our case, where each MDP
represents a specific managed agent, as explained in Section 4.

Optimizing Delegation Between Human and AI Collaborative Agents 3

Another clear distinction is our consideration of distinct and single agent
actions at a given time. This means we are not allowing concurrent actions for
the various agents of the team. Rather, the task hinges on the manager’s abil-
ity to learn an association between contexts and individual agent performance.
Therefore, the concepts in the multi-agent cases do not apply.

To summarize, the allowance of distinct and compatible models of the indi-
vidual agents’ MDPs is a worthwhile and novel concept. Under this paradigm,
we can remove the common assumptions of many domains while allowing for
compatibility with prior RL and related theory. These methods allow us to show
analytical results as well as test agent performance.

Before presenting our approach to model and optimize the manager (Sec-
tion 4) and the performance achieved in a relevant case (Section 6), in Section 2
we summarize the main background we exploit in terms of analytical approach,
and in Section 3 we analyze in more details the relations and advancements with
respect to the state of the art.

2 Background

2.1 Markov Decision Process (MDP)

Given the use of RL agents to define both our underlying agents and the man-
ager, we assume that the acting agents, those performing actions in the environ-
ment, operate with respect to a Markov Decision Process (MDP). We assume a
standard definition of the MDP M = ⟨S,A,R, T, γ⟩, where:

– S, the state space, is the set of states the agent can traverse
– A, the action space, is the set of actions an agent is allowed to take
– R : S ×A→ R, is the reward function denoting action utility
– T : S × A × S → [0, 1], the transition function, denotes the probability of

transitioning between two states when an action is performed
– γ, the discount parameter, dictates how strongly values decay according to

their temporal distance

With the assumption of an MDP, we know the actions of the agents depend
specifically on the current state/context.

2.2 Semi-Markov Decision Process (SMDP)

For our manager, we encounter parallels with concepts investigated with re-
gards to Semi-Markov Decision Processes (SMDP), which allows for splitting
the problem into a hierarchy of representations. The base level includes a model
of discrete states and actions, with the addition of a policy which guides the
action selection at this bottom level. Higher levels abstract state and/or action
representations into options. The use of options enables treating a sequence of
states and actions as a singular item at the higher level of abstraction, which
enables behavior learning to at an abstracted level and at the lower level.

4 A. Fuchs et al.

In the case of a SMDP, the Markov assumption is relaxed. In one sense, this
can be a result of temporally extended actions at the lower abstraction level,
where the transitions depend on more than just current state and the selected
action. In the other case, SMDPs allow actions conditioned on the history of
states and actions. This history is commonly a subset of the episode history
and only includes information since the start of a particular time window. The
window depends on the use case, but a common one is that of options in which a
hierarchy can be formed with a collection of actions treated as a single abstract
action (i.e., an option). In this case, the option could take multiple time steps
to complete, with the total time being stochastic. As such, the estimates of
transitions and rewards need to accommodate the variance in times and actions.
A common representation is options ⟨I, π, β⟩ where:

– I ⊆ S is the set of states where option o is available for selection/activation
– π : S ×A→ [0, 1] is the policy for behavior used for the option
– β : S+ → [0, 1] is the likelihood an option terminates in a state

with S+ referring to the original state space with an included optional termi-
nating/trap state. As will be exemplified in Section 5, such a trap state allows
to easily model terminating conditions once an agent has reached a certain goal
and should stop any further actions afterwards.

In the SMDP model, the notion of rewards and transitions are updated to
consider the new form of interaction agents have with the environment. Rewards
are now defined as

ros = E
[
rt+1 + γrt+2 + · · ·+ γk−1rt+k|E(o, s, t)

]
(1)

where t+ k represents the random option termination times according to π and
β and E(o, s, t) is an indicator denoting option o was initiated in state s at time
t. In this representation, we see the length of an option and the observed rewards
dictating the overall option’s reward. This accounts for both the stochastic time
and the behavior policy underlying agent interaction with the environment. As
for state predictions, the common form is a decaying sum of joint probabilities

poss′ =

∞∑
k=1

p(s′, k)γk (2)

where p(s′, k) is the probability that the option terminates in state s′ after k time
steps. Note that this does not define a valid distribution but ensures estimates at
longer horizons offer much less importance than the more accurate and shorter
horizon estimates. These rewards and visitation estimates can then be combined
to define a value function

V µ(s) = E
[
rt+1 + γrt+2 + · · ·+ γk−1rt+k + γkV µ(st+k)|E(µ, s, t)

]
(3)

for Markov policy µ. The policy µ selects the option to use in state s while k is
the option duration. The state-action value can be estimated similarly. Further,

Optimizing Delegation Between Human and AI Collaborative Agents 5

this enables temporal difference methods for policy learning. Specifically, we can
define a standard Q() function of a Reinforcement Learning problem [22]

Q(s, o)← Q(s, o) + α

[
r + γk max

o′∈Os′
Q(s′, o′)−Q(s, o)

]
(4)

where the use of γk to discount the future value follows [2].

3 Related Work

3.1 Hybrid Reinforcement Learning for Single Agent

In [10], the goal is to define a model and training method for option learning in
a single agent setting. More specifically, the approach focuses on learned options
which are “reusable”, where agents are only expected to add new options if they
improve the performance. Another relevant topic is that of [5], where the authors
generate Cooperative Consecutive Policies (CCP). This is intended to generate
multiple policies which can be utilized sequentially to accomplish a larger task.
The goal with CCP is to reduce the complexity of any one task while improving
the compatibility/performance with respect to the consecutive policies.

Generally, approaches found in the single-agent Hierarchical Reinforcement
Learning (HRL) literature are more closely aligned to our approach but are
attempting to learn policies at both levels of the hierarchy. Instead, we assume
our option policies are controlled by existing behavior policies for our available
delegation agents. This means the manager agent is not learning the option
policies but is instead learning a delegation policy to select “options”, which in
our case are represented by our agents. This means we can instead focus on more
direct behavior learning for the manager, but we will need to still ensure that
the value function reflects the dynamics the manager will observe when selecting
between existing agents.

3.2 Hybrid Reinforcement Learning in Multi-Agent Reinforcement
Learning Contexts

There are numerous approaches attempting to support multiple agents in a Re-
inforcement Learning setting, including cases regarding the representation of
agent behaviors via “options” in fully or partially observable environments [3,
4, 13–15, 19, 20, 23]. Similar to these approaches of temporal abstraction, [11]
demonstrates state abstraction in a pursuit-evasion game. As a relevant multi-
agent HRL example, consider the approach outlined in [23] which learns to op-
timally assign agents to sub-tasks in a cooperative multi-agent task. In [23],
similar agents are grouped so they can share knowledge and be selected for com-
patible tasks. Selection is performed based on agent ability regarding the task.
In this case, the ability measure compares agent experience with the sub-task to
compare the relation of its knowledge to the features of the proposed task. This

6 A. Fuchs et al.

gives a likelihood of a sub-task being selected for an agent which is based on a
notion of compatibility.

As we are in fact utilizing multiple agents, it would seem at first like there
could be significant relevance to our scenario. In our case, as we are not including
cases of simultaneous/concurrent control, we focus on what could equate to a
single agent HRL scenario. The manager is only responsible for identifying an
agent to delegate and then observing the resulting state changes. Therefore, the
manager is learning a policy more closely aligned to the single agent version of
this topic. We could conceivably extend our approach in the future to include
more agents, but the use of single agent control seems more immediately relevant
and far less explored.

3.3 Delegation

Previous work in delegation, such as [6, 7, 12, 16, 21], demonstrate relevant con-
cepts and approaches. However, it is worth noting that all of these are assuming
the traditional use of single MDP models for all agents. This means that gener-
ally the actions, transitions, etc. are consistent for the different agents. In other
words, the decision to change delegation comes down strictly to a measure of per-
formance/cost per time step within a common model. This means the variation
will come from a difference of agent cost, policy skill levels, observation abilities,
etc. In this case, the delegation is occurring strictly between agents operating in
entirely equivalent situations but with variations in agent performance. Again,
this means that the current common methods focus on a measure of cost or
agent performance in determining the best choice.

4 Agents and Manager Models

4.1 Team Agent Models

To demonstrate our model and assumptions, we will describe key aspects from
the perspective of a team of two underlying agents. Extending our assumption
of operating in an MDP, we assume the agents are not required to be operating
in the same MDP but rather in compatible MDPs (see Section 4.2). We assume
agents exist in the same state space, but our approach allows for differences in
actions, transitions, and rewards. As demonstrated in Figure 1, two agents could
exist which operate in the same state space, but transition differently between
states. In Figure 1, these transitions are represented by green arrows for the first
agent and black arrows for the second. Both agents can reach the same states
(i.e., equivalent state reachability), but the trajectories would vary depending on
which agent you observe. This ensures the agents are never given acting author-
ity in a state which does not exist in their MDP, or in a state which could not
be reached in their learning phase. Further, this ensures that mixed trajectories
utilizing decisions from one or more of the agents remain valid. The key distinc-
tion in our MDP assumptions comes from our allowance of mismatched actions,

Optimizing Delegation Between Human and AI Collaborative Agents 7

Fig. 1: Sample MDPs based on two transition functions (Agent #1: black arrows,
Agent #2: green arrows)

transitions, and rewards. In this paradigm, the remaining key characteristic is
ensuring the transitions maintain the reachability/compatibility assumption. In
other words, following the example in Figure 1, the transitions of each agent only
need to ensure that a state reachable by one agent can also be reached by the
other. For example, the black arrows allow moving from 1 → 2, but the agent
following the green arrows would need an additional transition to reach the same
state (e.g., 1 → 4 → 2). With the defined requirements on the transitions, we
ensure agents are not restricted when learning policies. This ensures we do not
restrict the supported agents in our framework, which enables more generalized
support for team compositions.

4.2 Manager MDP & Model

Following the previous assumption of two agents, we assume there exist two com-
patible MDPs Md1

= ⟨S1, A1, R1, T1, γ1⟩ and Md2
= ⟨S2, A2, R2, T2, γ2⟩ where

S1 = S2. Further, assume A1 ̸= A2 and T1 ̸= T2. Finally, letting SM = S1 = S2,
our reachability assumption noted in Section 4.1 requires that a state s′ ∈ S
reachable by agent d1 from some state s1 ∈ S must be reachable from some
other state s2 ∈ S for agent d2. Again, this does not require that s1 = s2, but
we do require that each agent can form trajectories that start and terminate
in the same states. With these assumptions, it is clear a manager m delegating
between agents d1 and d2 for Md1 and Md2 , respectively, can treat the team
as navigating a combined Managed MDP (MMDP) M . We will define MMDP
M = ⟨D,S,AM , RM , TM , γM ⟩ with:

– D = {d1, d2}, the set of agents available for delegation
– AM =

⋃
d∈D{(a, d) : a ∈ Ad}, the action space for MDP Mi, i ∈ D

– RM (s, d, s′), the manager’s reward function
– TM , the manager’s transition function

With our definition of the MMDP, we can define our relevant manager-specific
RL model. As our scenario relates to the options framework from the SMDP

8 A. Fuchs et al.

model, our manager model is similarly inspired. First, we will define the manager
transition, which will utilize the underlying dynamics of the agents in the team:

TM (s′|s, d) =
∑
a∈Ad

πd(a|s)Td (s
′|s, a) (5)

As is indicated, the likelihood of transitions relies directly on the agent policy
πd and transitions Td for the delegated agent. This allows us to model the single
action transitions the manager could encounter given a team. With our transition
model, we can then define a value function for our manager given a manager
policy πm:

V πm(s) = Ed∼πm

[∞∑
i=0

γirt+i|st = s, πd

]
(6)

= Ed∼πm
[rt + γV πm(st+1)|st = s, πd]

=
∑
d∈D

πm(d|s)
∑
a∈Ad

πd(a|s)
∑
s′∈S

Td(s
′|s, a) [RM (s, d, s′) + γV πm(s′)]

Again, the key changes over a standard RL model are the need to account for
the policy and transitions of the delegated agents. This gives the definition of
the optimal value function V ∗ as

V ∗(s) = max
d

∑
a∈Ad

∑
s′∈S

πd(a|s)Td(s
′|s, a) [RM (s, d, s′) + γV ∗(s′)] (7)

with the corresponding state-action value function Q∗

Q∗(s, d) =
∑
a∈Ad

∑
s′∈S

πd(a|s)Td(s
′|s, a) [RM (s, d, s′) + γV ∗(s′)] (8)

It can be shown that the above definitions ensure the model conforms to the
requirements for convergence in Reinforcement Learning (see [8]). Therefore, we
can use standard RL techniques to estimate the optimal manager policy πm, i.e.,
we can optimize the choice of the delegation agent d that maximizes Equation 6
to maximize the expected reward achieved by the manager (which clearly means
optimizing the behavior of the entire system).

5 Application in Case of Single Action Delegations

To demonstrate our approach, we will test the manager model in a gridworld
scenario (see Figure 2). This allows us to test our approach in a scenario which
removes possible ambiguous characteristics while still being non-trivial and used
in recent literature (e.g., [9, 17]). In a gridworld environment, agents commonly
transition through single step actions a ∈ {↑,→, ↓,←}. Agents are then trained
to accomplish a task, such as safe navigation from a start state to a goal state.

Optimizing Delegation Between Human and AI Collaborative Agents 9

The gridworld also ensures compatible states since agent distinction comes
from specific action spaces and transitions for the different agent types. This is
done via action spaces Ai ⊂ A = ×k{↑,→, ↓,←}, for agent step size k where we
assume that k is a constant parameter, which may be different for each managed
agent. In our scenario, the actions for an agent are assumed to take a single time
step and are comprised of one or more atomic actions. Therefore, different agents
can navigate an environment at different rates, and the manager observes that,
when it delegates to a certain agent, that agent will operate for k single step
actions in a time step without possibilities for further interventions. Note, the

Fig. 2: Gridworld environment for training and testing of agents and teams.

level of restriction of the action space will determine how likely an agent is
to encounter a wall collision. For instance, if we only allow a 3-step agent to
move in repeated sequences of atomic actions (e.g., →→→), then gridworlds
with numerous hallways and turns will increase the frequency of collisions. It is
essential the manager identifies where these differences matter and how best to
utilize them.

The actions for our k-step agents are demonstrated in Figure 3. In the figure,
each green arrow indicates an action available to the agent starting from the
center point, and the direction/termination of the arrow indicates the movement
completed in an unobstructed scenario. Specifically, starting from the center,
the agent can terminate in any of the squares containing the end of an arrow,
respectively after a 1-, 2- or 3-step action. If the agent encounters a wall along
the arrow’s path, the action terminates in the cell the agent reached along the
arrow’s path prior to the collision.

Generally, we can treat any goal state as a trap state with value zero. This
will ensure the probability of a trajectory which moves beyond the goal state is
zero and that the value of any trajectory with additional steps in the goal state
will not accumulate further value. Additionally, a trajectory of step-size k which
reaches a goal state after k̂ < k atomic actions can be treated as equivalent to
any longer sequence with the same sub-sequence. This is due to the probability
of all transitions while at the goal state being zero aside from those which loop
to stay in the same state with probability equal to one. Hence, early termination

10 A. Fuchs et al.

(a) (b) (c)

Fig. 3: Agent actions spaces by step size. Arrows indicate actions starting from
center cell. (a) 1-Step agent, (b) 2-Step agent, (c) 3-Step agent with sample
action destinations X, Y, and Z.

of a delegation should have no impact on the manager’s transition and value
function.

With the above framework, we update our model to include a representation
of the k-step actions the agents will utilize. This ensures the manager will be
observing accurate transitions, which will further ensure the transitions and
value function are accurate with respect to the current team. First, we derive
the following manager transition function:

TM (s′|s, d) =
∑

ad(t),sd(t)

t+k−1∏
i=t

πd(ai|si)Td(si+1|si, ai)1 [st+k = s′] (9)

where ad(t) = {at, . . . , at+k−1} and sd(t) = {st+1, . . . , st+k|st = s} represent the
agent’s sequence of atomic actions and states during their delegation window.
Note that the transition function depends only on the starting and ending states
respectively (s and s′) and not on the intermediate states, as the latter are not
under the control of the manager. This transition function is derived starting
from the general formulation of TM provided in Section 4, but we have extended
the probability to include the multi-step nature of the agent actions. This ensures
the transitions of the manager still reflect the underlying mechanics of the agent
MDPs.

Given a definition of manager transitions, we can derive a manager value
function. Remember that we assume that the manager has no access to the
internal mechanisms through which the managed agents learn their own poli-
cies. Therefore, in this context, we will assume that the manager observes no
reward derived from the subsequent states and actions of the delegated agents.
Therefore, the manager’s value function will treat each estimate as independent
of these underlying dynamics as well. However, we have included the use of a
discount parameter based on the delegated agent’s step size. This is inspired by
the options framework in SMDPs. In our case, the intermediate rewards that
would be discounted in the options framework are unobserved (i.e., are zero)

Optimizing Delegation Between Human and AI Collaborative Agents 11

by the manager, so only the γkd discount is applied to the observed value. As
such, the value function will follow a similar pattern to Equation 6. In this case,
the delegation agent specific actions and transitions are encompassed by TM ,
resulting in value function.

V (s) =
∑
d∈D

πM (d|s)
∑
s′

TM (s′|s, d)[RM (s, d) + γkdV (s′)] (10)

where kd is the step-size of the delegated agent d, while [RM (s, d) + γkdV (s′)]
denotes the expected rewards of the manager when choosing delegation agent
d with expected transition in state s′. The use of γkd aligns with the SMDP
framework and enables indicating a discount dependent on the number of atomic
actions a delegated agent will perform.

For the reward function, we will use a simple reward which does not rely
on any knowledge specific to the underlying agents. For our manager, we will
provide rewards using

R =

100− cd goal is reached
−1− cd goal not reached, but valid step
−10− cd delegated agent caused wall collision
−100− cd episode terminated without reaching goal

(11)

where cd denotes the costs of agent d. In other words, we penalize the manager for
agent costs, and for episode length with the step penalty in the reward function.
Note that the specific values of the reward are not that important. What is key is
to have a form of reward that can help drive the manager in the desired direction.
With the given reward, the manager should learn to minimize episode lengths
while accounting for agent costs. In our paradigm, cost can represent relative
preference, operating costs, etc. We should note that this simpler reward does
not specifically prevent the manager from allowing a wall collision if the overall
reward is higher. In this scenario, we wanted to demonstrate the manager’s
ability to find a team which can reach the goal fastest and lowest cost, but with
the option to accept a collision if it means higher overall reward. Regarding
the manager reward, safety-critical cases could be considered. In this case, wall
collisions could terminate an episode with a penalty. Alternatively, the penalty
for collisions could be increased to further discourage these outcomes.

6 Results

In this section, we will demonstrate the performance of our manager in multiple
team configurations. Further, our results will include cases where the manager
delegations are subject to agent-specific costs. With the inclusion of cost, the
manager must make delegations which both match the desire for good team
performance while also accounting for agent cost.

12 A. Fuchs et al.

The x-axis labels correspond to the various team compositions. Our label
convention is "AB-CD", where A/C denote step size and B/D denote error like-
lihood – L: low, M: medium, H: high, N: none. For example, 1H-2L corresponds
to a team with a 1-step high error likelihood agent and 2-step low error likeli-
hood agent. Likelihood indicates how frequently an agent makes an error and
likely severity of change. The actions selected can change with our error mapping
via a decaying exponential function (truncated in [0, π]), which determines how
large a change is made. An error occurs when the action performed differs from
the originally intended action. The severity of the error indicates how much of
a divergence is observed between the error and the intended action.

Following Figure 3, each k-step action corresponds to an arrow leading from
the center cell to another cell. Errors occur when an agent follows a differ-
ent arrow than intended. As seen in Figure 3b and Figure 3c, different ac-
tions/arrows can lead to the same state but different outcomes. For instance,
the costs for actions could vary or walls could exist along one arrow’s path and
not another. In these cases, the rewards or trajectories could vary significantly.
As an example of errors, starting from ↑↑↑ leading to Y, ↑↑→ is a clockwise
shift of one arrow/action leading to X and ←←↓ is an anticlockwise shift by
eight actions/arrows leading to Z (Note: ↓↓← is a nine-error shift also lead-
ing to Z). Errors are determined by sampling according to our function and
binning to determine how many arrows away to select the error action, with
clockwise/anticlockwise chosen randomly.

Regarding team compositions, we consider cases of agents with step sizes of 1
to 3. This was intended to represent agents with clear distinction in action spaces
while maintaining a reasonable level of “speed” for the agents (i.e., limiting the
advantages of any one agent). Further, the step sizes enable teams with agents
demonstrating strong performance in particular grid regions/types, but they
also allow for variation between agents. This ensures the manager will have
opportunities to operate under multiple team configurations and varying ideal
utilization.

6.1 Low Cost for Shorter Steps

For the following case, the manager was given a cost of 1, 4, and 7 for the 1-
step, 2-step, and 3-step agents, respectively. With this, the manager is given a
reward function which counteracts some benefits of choosing agents with higher
step sizes. This impact is in conjunction with the fact that the manager reward
allows for some wall collisions with penalty. Therefore, we see an increasing per-
step cost as the step size increases (e.g., cost of 6 for six 1-step actions vs. a cost
of 14 for two 3-step actions). In the following plots, we illustrate the rewards
observed for both trained and random managers, i.e., managers that delegate
between the two agents according to a uniform probability of 0.5 at any decision
point.

As is apparent in our results, cases with the least error-prone agents offer the
manager the best chance of success. For example, the 1N-2N (Figure 4a), 1L-3N
(Figure 4c), and 2N-3L (Figure 4e) cases all demonstrate the manager utilizing

Optimizing Delegation Between Human and AI Collaborative Agents 13

(a) Low-Cost: 1-Step/2-Step team (b) High-Cost: 1-Step/2-Step team

(c) Low-Cost: 1-Step/3-Step team (d) High-Cost: 1-Step/3-Step team

(e) Low-Cost: 2-Step/3-Step team (f) High-Cost: 2-Step/3-Step team

Fig. 4: Manager performance compared to random selection. Agents subject to
varying levels of error likelihood – L: Low, M: Medium, H: High, N: None

the low error rates of the agents, resulting in higher overall rewards. Further, the
lower error rates allow the manager to take advantage of the higher step sizes to
maintain strong team performance. For cases where the manager encounters one
or more team members with high error likelihoods, we continue to see cases of
strong performance. As seen for 1H-2L (Figure 4a), 1H-3N (Figure 4c), and 2L-

14 A. Fuchs et al.

3H (Figure 4e), our manager finds agent utilization achieving high scores despite
the high variance in agent performances.

6.2 Higher Cost for Shorter Steps

In a cost reversal, we demonstrate the case where the manager now observes a
much higher cost for the short step agents and reduced for the longer ones. The
manager is given agent costs of 7, 4, and 1 for the 1-step, 2-step, and 3-step
agents, respectively. While this change should not impact the manager’s ability
to select better performing agents, we do anticipate seeing modifications to the
relative performance and overall manager results (i.e., maximum reward and
agent utilization).

We again see our manager learns desirable agent utilization. Clearly, the 1L-
2N (Figure 4b), 1L-3N (Figure 4d), and 2L-3N (Figure 4f) cases all demonstrate
the manager utilizing low error agents while accounting for their corresponding
costs to find optimal results. In the cases of one or more team members with
high error likelihoods, we continue to see cases of strong performance. As seen
in the 1H-2L (Figure 4b), 1H-3N (Figure 4d), and 2M-3M (Figure 4f) cases,
our manager again finds agent utilization achieving high scores despite the high
variance in agent performances.

7 Conclusion

In Figure 4, we see the manager has consistent and stronger performance with
less error-prone agents for both agent cost scenarios. In both cases, as expected,
increased variance of agent performance coincides with increased variance in
manager rewards. Still, given the performance indicated by our method, we see
that our manager was successful in learning a delegation policy. Despite the man-
ager operating without direct observation of agent actions, the manager learned
identify desirable delegations to generate good trajectories. Consequently, we
demonstrated a method which could train a manager to successfully delegate
between agents without assuming unfair access to additional knowledge. Fur-
ther, we demonstrated the manager can accommodate for changes in agent costs
to learn a delegation policy.

Acknowledgments This work was partially supported by the CHIST-ERA-19-
XAI010 SAI project. M. Conti’s and A. Passarella’s work was partly funded by
the PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000013 - "FAIR"
funded by the European Commission under the NextGeneration EU programme.

References

1. Fatality and injury reporting system tool (first) (Nov 2022),
https://cdan.dot.gov/query

Optimizing Delegation Between Human and AI Collaborative Agents 15

2. Bradtke, S., Duff, M.: Reinforcement learning methods for continuous-time markov
decision problems. Advances in neural information processing systems 7 (1994)

3. Chakravorty, J., Ward, N., Roy, J., Chevalier-Boisvert, M., Basu, S., Lupu,
A., Precup, D.: Option-critic in cooperative multi-agent systems. arXiv preprint
arXiv:1911.12825 (2019)

4. Chen, J., Haliem, M., Lan, T., Aggarwal, V.: Multi-agent deep covering option
discovery. arXiv preprint arXiv:2210.03269 (2022)

5. Erskine, J., Lehnert, C.: Developing cooperative policies for multi-stage reinforce-
ment learning tasks. IEEE Robotics and Automation Letters 7(3), 6590–6597
(2022)

6. Fuchs, A., Passarella, A., Conti, M.: A cognitive framework for delega-
tion between error-prone ai and human agents. In: 2022 IEEE Interna-
tional Conference on Smart Computing (SMARTCOMP). pp. 317–322 (2022).
https://doi.org/10.1109/SMARTCOMP55677.2022.00074

7. Fuchs, A., Passarella, A., Conti, M.: Compensating for sensing fail-
ures via delegation in human–ai hybrid systems. Sensors 23(7)
(2023). https://doi.org/10.3390/s23073409, https://www.mdpi.com/1424-
8220/23/7/3409

8. Fuchs, A., Passarella, A., Conti, M.: Optimizing delegation between human and ai
collaborative agents (2023)

9. Gabor, T., Sedlmeier, A., Kiermeier, M., Phan, T., Henrich, M., Pichlmair, M.,
Kempter, B., Klein, C., Sauer, H., AG, R.S., et al.: Scenario co-evolution for rein-
forcement learning on a grid world smart factory domain. In: Proceedings of the
Genetic and Evolutionary Computation Conference. pp. 898–906 (2019)

10. Garcia, F.M., Nota, C., Thomas, P.S.: Learning reusable options for multi-task
reinforcement learning. arXiv preprint arXiv:2001.01577 (2020)

11. Guan, Y., Afshari, M., Zhang, Q., Tsiotras, P.: Hierarchical decompositions of
stochastic pursuit-evasion games. In: 2022 IEEE 61st Conference on Decision and
Control (CDC). pp. 5062–5067. IEEE (2022)

12. Jacq, A., Ferret, J., Pietquin, O., Geist, M.: Lazy-mdps: Towards interpretable rl
by learning when to act. In: Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems. pp. 669–677 (2022)

13. Kurzer, K., Zhou, C., Zöllner, J.M.: Decentralized cooperative planning for auto-
mated vehicles with hierarchical monte carlo tree search. In: 2018 IEEE intelligent
vehicles symposium (IV). pp. 529–536. IEEE (2018)

14. Lau, Q.P., Lee, M.L., Hsu, W.: Coordination guided reinforcement learning. In:
AAMAS. pp. 215–222 (2012)

15. Menda, K., Chen, Y.C., Grana, J., Bono, J.W., Tracey, B.D., Kochenderfer, M.J.,
Wolpert, D.: Deep reinforcement learning for event-driven multi-agent decision
processes. IEEE Transactions on Intelligent Transportation Systems 20(4), 1259–
1268 (2018)

16. Meresht, V.B., De, A., Singla, A., Gomez-Rodriguez, M.: Learning to
switch between machines and humans. CoRR abs/2002.04258 (2020),
https://arxiv.org/abs/2002.04258

17. Moy, G., Shekh, S.: Evolution strategies for sparse reward gridworld environments.
In: AI 2022: Advances in Artificial Intelligence: 35th Australasian Joint Conference,
AI 2022, Perth, WA, Australia, December 5–8, 2022, Proceedings. pp. 266–278.
Springer (2022)

18. Rahman, Q.M., Sünderhauf, N., Dayoub, F.: Did you miss the sign? a false negative
alarm system for traffic sign detectors. In: 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). pp. 3748–3753. IEEE (2019)

16 A. Fuchs et al.

19. Rohanimanesh, K., Mahadevan, S.: Learning to take concurrent actions. Advances
in neural information processing systems 15 (2002)

20. Singh, A.J., Kumar, A., Lau, H.C.: Hierarchical multiagent reinforcement learning
for maritime traffic management (2020)

21. Straitouri, E., Singla, A., Meresht, V.B., Gomez-Rodriguez, M.: Reinforce-
ment learning under algorithmic triage. CoRR abs/2109.11328 (2021),
https://arxiv.org/abs/2109.11328

22. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

23. Yang, M., Zhao, J., Hu, X., Zhou, W., Li, H.: Ldsa: Learning dynamic sub-
task assignment in cooperative multi-agent reinforcement learning. arXiv preprint
arXiv:2205.02561 (2022)

