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Abstract. In this paper, we argue that the prevailing approach to train-
ing and evaluating machine learning models often fails to consider their
real-world application within organizational or societal contexts, where
they are intended to create value for people. By adopting this perspective,
we fundamentally change how we evaluate and select machine learning
models. Specifically, we focus on the implementation of machine learn-
ing models into real-world workflows involving both machines and hu-
man experts, with the latter being involved whenever the machine is not
confident enough in its prediction and abstains. We show how standard
quality metrics like accuracy and f-score are inappropriate in measuring
the real value of machine learning models in such hybrid human-machine
settings. To mitigate this problem, we introduce a simple but theoret-
ically sound strategy to adapt existing machine learning models so as
to maximize value. An extensive experimental evaluation highlights the
importance of the value-based perspective in evaluating models and the
impact of calibration and out-of-distribution settings on model value.

Keywords: hybrid intelligence - selective classification

1 Introduction

Recently, a few position papers [11,54,55] have challenged the underlying as-
sumptions of quality in Machine Learning (ML), particularly the overemphasis
on accuracy-based metrics and various measures of calibration errors. There are
two observations at this stance: (i) ML models are almost always applied in hy-
brid human-machine settings, where the model can abstain or reject predicting if
the confidence is insufficient (Fig. 1), and (ii) the value (cost) of correct/incorrect
inferences or rejections is determined by the use case, not by the model.

We have experienced that the majority of AI deployments in the enterprise
consist of selective models or selective classifiers [23], which is more of a rule
than an exception. An example where this commonly occurs is in customer
support requests, where the goal is to identify the customer’s intent to trigger
an automated request processing workflow if possible. Failing to comprehend
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the customer’s intent and resorting to human agents is not ideal. However, it
is even more problematic to misinterpret the customer’s intent and guide them
down the wrong path toward a resolution. This is why intent classifications
are filtered based on prediction confidence. How “good” or “useful” a model is
therefore depends on the value it brings to the ML solution workflows (Fig. 1).
This value depends on how often the workflow rejects the predictions, on the
correctness patterns of the predictions that are not rejected, and on the “cost”
of errors vs. benefits of correct predictions. This value notion is not what model
accuracy or F1 score measure. While in this paper we only marginally discuss
the plethora of Large Language Models (LLMs), the problem is exactly the same
if not worse: With generative Al the question of whether to show an answer or
to withhold it is crucial, and there are many things that can be wrong in an
answer (e.g. hallucination). We add that the fact that some APIs do not reveal
likelihood /confidence level makes model evaluation more difficult.

To some extent, all this is trivial. There is no inherent difficulty in devel-
oping use case-based value functions, selecting the best model from a set of
well-performing models based on the value function, or evaluating a model’s
performance across multiple value functions. Moreover, one could contend that
accuracy metrics are a sufficient substitute for evaluating model improvements
in data science, or for selecting models to deploy in an Al platform designed to
meet specific use cases. Thus, a practical approach would be to select the model
with the highest accuracy or F1 score and allow users to filter out low-confidence
predictions. Accuracy metrics are easy to understand and don’t require deter-
mining parameters like “cost of errors," which can be challenging to estimate.

In this paper, we show that this reasoning is wrong. If we accept that classi-
fiers are mostly applied as selective models, then the method we use to measure,
compare, and even train models must change. The implications of models being
almost always applied as selective classifiers are often neglected in the literature,
and this is also reflected in model leaderboards. We also show that the simplicity
of not having to choose a cost parameter is an illusion: when we use accuracy to
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Fig.1: Typical implementation of ML models into an ML solution workflow.
The rejection function filters based on a confidence threshold, assuming that the
classifier is trained independently of the rejection logic. This does not have to be
- the classifier can be aware of the cost, in which case it becomes less “general".
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compare models, i) we do implicitly choose a cost parameter, often without real-
izing it, and ii) this implicitly selected cost is probably one of the worst choices:
that of setting the relative cost of errors to zero. Despite being counter-intuitive,
we show that accuracy is a quality metric that may be selected when the con-
sequences of model errors are not critical. When a model is likely to be used
across multiple use cases, relying solely on accuracy-based metrics can have sig-
nificant implications. Overall, we show that: (i) Universal metrics used for model
evaluation are poor indicators of model value, potentially leading to incorrect
decisions such as choosing models with negative value, (ii) Metrics designed to
account for cost-sensitive errors are also inappropriate as they fail to consider
the reject option, (iii) Lack of calibration substantially affects model value, and
poorly calibrated complex models can be outperformed by simple, decades-old
models that are easier to calibrate, and (iv) Operating in an out-of-distribution
(OOD) setting further reduces the reliability of standard performance metrics.
The remainder of this paper is structured as follows: in Section 2, we review
related works on our concept of model value. Then, in Section 3, we formalize
this notion and introduce the rejection threshold maximizing value, along with
its extension to the cost-sensitive setting where different errors have different
costs. Section 4 presents our experimental analysis comparing our value metric
with standard performance measures, while Section 5 offers our conclusions.

2 Related work

Selective classification. Mimicking the typical use of ML models in many
practical applications, a number of approaches rely on the combination of an
ML model making an initial prediction and a human annotator taking over
when the model’s confidence is not high enough [10]. Selective classifiers are
specifically conceived for this use, by including a rejection mechanism to decide
when to abstain from making a prediction. The literature on selective classi-
fiers is extensive, encompassing a broad range of learning algorithms, including
nearest-neighbor classifiers [30], SVM [21], and neural networks [14, 15, 23] (see
Hendrickx et al. [31] for a recent survey). The effectiveness of this solution is,
however, heavily dependent on the reliability of machine confidence, which has
shown to be very poor, especially for deep learning [5, 24].

Classifier confidence. To effectively use a classifier [32], it is important to
understand its properties and have confidence in its individual predictions. The
literature proposes various confidence-based methods, including measuring the
entropy of the softmax predictions [61], calculating trust scores based on the
distance of samples to a calibration set [32], determining a confidence thresh-
old (via Shannon entropy [56], Gini coefficient [6], or norm-based methods [45])
that maximizes coverage for a given accuracy [9], and using semantics-preserving
data transformation to estimate confidence [4]. Post-hoc recalibration is a pop-
ular strategy for improving classifier confidence, with techniques ranging from
temperature scaling [24] to Dirichlet calibration [36] (see a recent survey by Filho
et al. [58]). However, as we will show in our experimental evaluation (see Sec-
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tion 4.2), it’s essential to complement these solutions with a proper value metric
to assess the classifier’s utility in real-world applications.

Cost-sensitive learning tackles classifier training challenges by accounting
for different error costs, especially in scenarios with imbalanced classes [19,
39,62, 65]. Existing work has [65]: (i) data-level approaches [63,72] where the
class distribution of training data is balanced via sampling methods, and (ii)
algorithm-level approaches, that use a thresholding scheme [12, 18,19, 39, 53, 57,
59] to improve the prediction performance on the minority class (e.g. in binary
classification, the threshold is set such that the prediction is 1 only if the ex-
pected cost associated with this prediction is lower than or equal to that of
predicting 0). Although this field is closely related to our setting as it considers
the impact of errors on the downstream pipeline, it assumes that the classifier
provides a prediction for every instance without any rejection mechanism. This
assumption can significantly impact the evaluation of the resulting classifier’s
quality, as our experimental evaluation will demonstrate (see Section 4.2).
Hybrid Human-AI systems aim at solving classification problems with hu-
mans and machines [16, 17, 50, 68|, but effectively combining human and machine
intelligence has many challenges. For example, trust in humans requires a deep
understanding of how to design crowdsourcing tasks and model their complexity
[22,47,69, 71], test and filter crowd workers [7], aggregate results into a decision
[25, 34, 35, 38,40, 67, 73], improve the engagement [26, 27,48], or leverage crowds
to learn features of ML models [13,51]. Furthermore, the effective aggregation
of human and machine decisions [43,44,46] depends on many factors, such as
training, explaining, sustaining, interacting, and amplifying. We believe that
defining appropriate measures of the value of the joint human-machine system
is a major prerequisite to keeping research in the field on the right course.

3 Measuring model ‘“value”

In this section, we formally define the notion of model “value”’, and show how
threshold-based selective classifiers, by far the most popular class of classifiers
in practical ML workflows, can be adjusted to maximize value.

3.1 The setting

Selective classifiers can be implemented as follows: (a) We take a model f that
outputs a prediction y and a confidence ¢, (or a vector c of confidence for a set
of possible answers). Then, we filter the predictions to take only those above
a certain confidence threshold (Fig. 2a), (b) f outputs predictions and confi-
dence, but a selector model s determines whether to accept the prediction by
considering input features x (Fig. 2b), (¢) A hybrid of the two above cases is
where the selector is a recalibrator r that can either take as input the prediction
and confidence measure (feature-agnostic calibrator) or also the input features
of z and adjust the confidence vector (feature-aware calibrator), typically apply-
ing threshold-based selection on the resulting confidence (Fig. 2¢), and (d) The
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Fig. 2: Typical ways of selectivity in classification.

model f is already trained to only output predictions that are “good enough”
and includes an “I don’t know” class (Fig. 2d).

The first case is the most common, at least in our experience. The second case
is an extension and generalization of the first case in two ways: it can take features
as input (s can be trained as opposed to “just” being a formula), and it can filter
based on any formula. It however requires some form of “training” or machine
teaching, which is highly non-trivial. The recalibrator also typically requires
some form of training. However, a feature-agnostic calibrator can be easily set
up by posthoc calibration strategies [58] (e.g. temperature scaling [24]). Finally,
the last case is what is being addressed by the recent literature on learning to
reject [31], which is currently confined to the academic world, but it could highly
benefit by incorporating the notion of value that we introduce here.

In formalizing “value”, we will progressively make a few assumptions that i)
allow to simplify the presentation of the problem without altering the essence
of the concepts, ii) are reasonable in many if not most use cases, and iii) make
the definition of the value function easier to understand and interpret for the
users who eventually have to deploy ML into their companies. We scope the
conversation on classification problems as it makes it easy to ground the examples
and terminology, and because it is easier to define a notion of accuracy. This is
important: people understand accuracy because it is simple, and that has value
even if accuracy is “inaccurate” as a metric, and most users will not be able to
express complex value functions. Note however that our results also apply to
other metrics (e.g. Fl-score) as we will show in our experimental evaluation.

3.2 Definition of value

We have a classifier g that operates on items = € D and returns either a predicted
class y € Y or a special label y,., denoting “rejection” of the prediction. Then,
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the average value per the prediction of applying a model g over D becomes:
V(9.D) = pVr + (1 = p)(aVe + L55[2 0 Valij) (1)

where p is the proportion of items in D that are rejected by g (classified as y,),
« is the accuracy for predictions above the threshold, V,. and V. are the value of
rejecting an item and classifying it correctly respectively, {2 is a matrix denoting
the proportion of predictions (above threshold) in each cell of the confusion
matrix, and V,, is a matrix with the cost for each type of error (set to zero
on the main diagonal corresponding to correct predictions), and ® denotes the
Hadamard (element-wise) product, of which we take the summation across all
elements ij. Notice that p, «, {2 all depend on D and g, and we omit the indices to
simplify notation. Also, if our classification problem has |)| classes, then {2 and
Vi are |Y| x |Y| (y, is not included here). An alternative representation would
be to just say that V(g,D) = 2'V’, where the confusion and value matrices
incorporate the reject class. This would allow us to model class-dependent values
of rejections and correct predictions. Instead, if we only consider costs based on
what we misclassify then {2 and V,, become vectors, and in the most common case
where all wrong predictions are considered equally bad in a first approximation,
then (2 and V,, are scalar, and {2 = 1 — «, so in this case, the formula becomes:

V(g, D) = pVr + (1 = p)(aVe + (1 — a) V) (2)

At this point, we simplify the notation to remove dimensionality (values can be
measured in dollars, but here we care about relative values because we want
to compare models and learning strategies), and arrive at a formulation that is
digestible for process owners (the people who apply Al in their processes), for
whom it may be hard to come up with the three cost parameters/vectors. None
of the above simplifications change the concepts presented.

We define as baseline the case where we do not have ML, or, equivalently,
where we reject any prediction. We set this baseline at 0 (V. = 0); making it
easier to evaluate a model in terms of (i) whether it improves on the baseline or
not, and (ii) whether we should adopt AI for a given problem.

V(g,D)=(1-p)(aVe+(1—a)Vu) (3)
We also express V,, in terms of V., as in V,, = —kV,, where k is a constant telling
us how bad is an error with respect to getting the correct prediction:

V(g,D) =Ve(l = p)(a— k(1 —a)) (4)

V. is a scaling factor for the above value formula. When reasoning about an
Al-powered solution workflow we disregard that factor, we can think in terms of
value “per unit of V. dollars”, or equivalently assume the magnitude of V., so we
can focus on value. From now on we, therefore, focus on “value per dollar unit of
rejection cost” V' = V/V,. We avoid introducing a new symbol and, without loss
of generality with respect to the above equations, we set V. = 1 to get Equation
5 capturing the same concepts as Equation 1 but simplifying our presentation.

Vg, D) = (1 = p)(a— k(1 —a)) (5)
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3.3 Filtering by threshold

We now focus on the most common situation observed in practice; the model
selectivity is applied by thresholding confidence values and rejecting predictions
that have confidence c less than a threshold 7 (case (a) in Figure 2). We are given
a model m that processes items x € D and returns a vector of confidences (one
per class). This is the output of a softmax; for each x, we consider the pair g, ¢
corresponding to the top-level prediction of m(z) and the confidence associated
with the prediction. Given a threshold 7, we define a function s:

. g ifée>T,
s(9,6,7) = .
Yy, otherwise.

where y,. is the special class label denoting “rejection” of the prediction. Our
classifier g is therefore now expressed in terms of m and 7. This means that
we can express the value as a function of m,D, 7. In a given use case, when we
are given m and have knowledge of 2 (or of k in the simplified case), we select
the threshold 7 € [0,1] that optimizes V (g, D) (We assume 7 is unique or we
randomly pick one if not). Thus, we can express the value of our classification
logic as a function of (m, D, k):

V(m,D,k) = (1 - pr)(ar — k(1 — az)) (6)

Notice that 7 can be set empirically on some tuning dataset D (it depends on
m, D, k), and p,; and «, reflect the proportions p and « given 7. However, if we
are aware of the properties of confidence vectors, we can set 7 regardless of D.
For example, if we assume perfect calibration (where the expected accuracy for
a prediction of confidence ¢ is ¢) [58], then we know that the threshold is at the
point where the value of accepting a prediction is greater than zero and o, = 7.
This means that to have V(m,D, k) > 0 we need 7 — k + k7 > 0, which means

> k/(k+1) (7)

This conforms to intuition: if k is large, it never makes sense to predict, better go
with the default. If k=0 (no cost for errors), we might always predict since there
is no penalty for applying inaccurate predictions. Perhaps paradoxically, this
case where inaccurate predictions are harmless is when accuracy is the metric
we want to use. If k=1 (errors are the mirror image of correct predictions), then
our threshold is 0.5. Figure 3(a) shows how a simple threshold-based selector
can be adapted to maximize model value.

We assumed that all errors have equal cost when deriving the threshold, but
it can be extended to cost-sensitive settings, as demonstrated next.

3.4 Cost-sensitive value and thresholds

In this section, we extend the discussion on the value and optimal threshold to
the setting in which different errors have different costs (and possibly, different
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(a) (b) ()

Fig. 3: Adapting selective classifiers to maximize value: (a) threshold-based selec-
tor (b) cost-sensitive threshold-based selector; (c) recalibrator + threshold-based
selector. Changes with respect to standard counterparts are highlighted in red.

correct predictions have different values). We focus on the binary classification
setting for simplicity, but the reasoning can be easily generalized to multiclass
classification. The cumulative value of a selective classifier g on a dataset D can
be written as (setting V;. = 0 as in the cost-insensitive case):

V(Qv D) = (1 - p)(thth + NinVin + NypVip + anan)

where Ny, Nen, Nyp, Npp are the numbers of true positives, true negatives, false
positives, and false negatives in D, and Vi, Vi, Vip, Viy are the values associated
to the corresponding predictions. Let V. be the base cost for a correct prediction.
This is typically associated with a correctly predicted negative instance, i.e.,
Vin = V.. We can define the other values as multiples of this base cost as follows:

V;Ep = ktchy pr = _kfp‘/;7 an = _kfn‘/c

for some user-defined and application-specific constants kyp, k¢p, kpn. The cumu-
lative value simplifies as:

V(9,D) = (1 = p)(NipktpVe + NinVe — NppkppVe — NpnkgnVe)
= (1 = p)VelktpNep + Nin — kgpNypp — knNin)

Setting V.. = 1 (unit of value) as in the cost-insensitive case, we get:
V(9,D) = (1 = p)(ktpNip + Nen — kspNpp — knNin)

Let’s now focus on the standard setting of a classifier rejecting by threshold.
Note that we need to set class-specific thresholds 7, and 7, for positive and
negative predictions respectively to account for the different costs. Consider an
instance x predicted as positive by the classifier. It’s expected value (according
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to the predictions in D) is given by:

V(g,x) = (1 — p)(kepNep/Np — kpp(Nygp/Np)
= (1 = p)(kepNip/Np — kp(1 — Nip/Np))
= (1= p)(Nip/Np(ktp + kp) — kgp)

where we normalized Ny, and Ny, by N,, the number of positive instances in D,
to turn them into probabilities, and we removed the terms containing N;, and
Ny, as their corresponding probabilities are zero if the instance is predicted as
positive. If the classifier is perfectly calibrated, we know that N,,/N, = 7,. A
positive value for the instance is thus achieved by setting 7, as:

Eyp
> — 8
TP ktp + kfp ( )

If x is predicted as negative by the classifier, it is expected value is given by:

V(g,x) = (1= p)(Nen/Nn — knNgn/Nn)
= (L= p)(Nen/Nn = kn(1 = Nen /Ny))
= (1 - p)(Ntn/Nn(l + kfn) - kfn)

where N, is the number of negative instances in the training set. If the classifier
is perfectly calibrated, we know that N;,/N,, = 7,. A positive value for the
instance is thus achieved by setting 7, as:

kfn
n > T 9
Tn > 1+I€fn ( )

Figure 3(b) shows how to adjust a threshold-based selector to maximize value
in a cost-sensitive setting. We assumed a binary classification setting for the
sake of simplicity, but the derivation can be easily extended to account for class-
specific thresholds in multiclass classification.

4 Experiments

We now show how a value-oriented perspective affects the model evaluation
and use. In particular, we try to answer the following questions: Q1) Is model
accuracy (or Fl-score) a sensible indicator of the value of a model?, Q2) Is
cost-sensitive error a sensible indicator of the value of a model in cost-sensitive
settings?, Q3) How does calibration affect the value of a model?, and Q4) How
does predicting in an OOD setting affect the value of a model?

Our experimental evaluation is focused on NLP classification tasks, for which
we analyze the behavior of simple as well as state-of-the-art models over various
datasets, models, and text encoders. This choice stems from the broad diffusion
of NLP models in companies, and from our experience in industrial use cases
that were all NLP-based. However, the concept of value can be applied to any



10 Sayin et al.

ML model deployed in a practical application, and we believe that the main
results of our experimental evaluation hold for many other domains. We refer
the reader to our GitHub repo* for the companion code.

4.1 Experimental Setup

Datasets and Tasks We use the following datasets in our experiments. Hate-
speech detection on Twitter: We replicated the original tests from [2] by analyz-
ing two widely used models ([1, 3]) and testing them on the Waseem et al. [66]
dataset. However, we could only recover 9671 of the tweets as of October 2021
(the original dataset size is 14949). Clickbait detection: The Clickbait Challenge
on the Webis Clickbait Corpus 2017° was classifying Twitter posts as a clickbait
or not. Both training and test sets are publicly available®, while each team was
free to choose a subset of the training set for validation (we followed the "blob-
fish" team). Multi-Domain Sentiment Analysis - and Dataset (MDS): Sentiment
analysis based on a dataset for domain adaptation’. The data includes four cat-
egories of Amazon products (DVD, Books, Electronics, and Kitchen). The task
is to learn sentiment from one of these domains and test it on the others.

Models and text encoders. We use various models for each task. For the hate-
speech dataset, we test the following leaderboard models: (i) Badjatiya et al. [3]
which uses an RNN to construct word embeddings and then classify them with
Gradient-Boosted Decision Tree. In the original paper, test accuracy is measured
as the average of the ten folds in cross-validation; however, in our reproduction,
we separated validation and test set before cross-validation, and they are used for
evaluation only after training. (ii) one model from Agrawal and Awekar [1] which
is composed of an embedding layer followed by a Bidirectional LSTM and a fully
connected layer with softmax activation. For the clickbait detection dataset, we
test 4 models from one leaderboard team on clickbait challenge: fullnetconc,
weNet, lingNet, and fullNet which are published on Github®. This team modified
the task into binary classification - they categorized items with a score under
0.5 into "non-clickbaiting", and vice versa. For the MDS dataset, we referred
to the leaderboard for the sentiment analysis task of Domain adaptation® and
tested the best-performing leader-board model, Multi-task tri-training (mttri)
by Ruder et. al. [52], that leverages multi-task learning strategies to improve the
performance of tri-training. As the source code of other competing approaches
was not publicly available, we compared mttri with three baseline models from
the scikit-learn library!'®: (i) a simple Logistic Regression model (LogR); (ii) a
basic MLP with a single hidden layer (MLPI); (iii) an MLP with four hidden
layers ("MLP/). All models were tested with a simple TF-IDF encoding.

* https://tinyurl.com /rethinking-value-of-ml-models
® https://webis.de/data/webis-clickbait-17.html
5 https://zenodo.org/record /5530410#. Y WcFtC8RrRV
" http://nlpprogress.com/english/domain _adaptation.html
8 github.com/clickbait-challenge/blobfish
9 nlpprogress.com/english/domain__adaptation.html
10 https://scikit-learn.org/
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Table 1: Comparison of accuracy, F1, Table 2: Comparison of accuracy, F1,

and value for increasing values of k. and value for recalibrated models.
Task Model Acc [F1 1 2Valu(/el for :7? 10 Task Model Acc [F1 1 ;’alui for 1;7? 10
Hate Speech |Badj. et al [0.82(0.63({0.64 0.5 0.36 0.27 0.22 Hate Speech |Badj. et al [0.82]0.63{0.64 0.51 0.36 0.27 0.22
Agr. et al. [0.73 |0.62 [0.46 0.22 -0.21 -1.08 -1.5 Agr. et al. [0.73 10.62 [0.46 0.21 0.0 0.0 0.0
Clickbait fullnetconc |0.86|0.68|0.71 0.56 0.29 0.04 0.01 Clickbait fullnetconc |0.86|0.68|0.71 0.61 0.49 0.37 0.33
weNet, 0.85|0.67 [0.70 0.56 0.31 0.04 0.01 weNet, 0.85 |0.67 [0.70 0.6 0.47 0.36 0.33
lingNet 0.82 0.56 |0.64 0.44 0.08 0.0 0.0 lingNet 0.82 0.56 |0.64 0.5 0.35 0.17 0.11
fullNet 0.86 {0.66 |0.71 0.59 0.37 0.06 0.01 fullNet 0.86|0.66 |0.71 0.6 0.49 0.37 0.33
MDS Elect. |LogReg 0.76 {0.74 |0.52 0.34 0.16 0.05 0.03 MDS Elect. |LogReg 0.76 {0.74 |0.52 0.36 0.23 0.12 0.1
MLP1 0.7510.71 |0.5 0.33 0.18 0.08 0.06 MLP1 0.74 10.71 |0.49 0.33 0.17 0.1 0.06
MLP4 0.73 10.71 {0.47 0.24 -0.14 -0.78 -1.06 MLP4 0.74 10.71 {0.49 0.29 0.11 0.0 0.0
mttri 0.81|0.79/0.62 0.44 0.15 -0.35 -0.58 mttri 0.81(0.79|0.62 0.45 0.19 0.11 0.0
MDS DVD  |LogReg 0.74 |0.74|0.48 0.28 0.12 0.04 0.03 MDS DVD LogReg 0.74 |0.74|0.48 0.31 0.17 0.09 0.06
MLP1 0.73 10.73 |0.46 0.27 0.13 0.05 0.04 MLP1 0.73 10.73 |0.46 0.28 0.15 0.04 0.02
MLP4 0.72 10.72 |0.44 0.20 -0.16 -0.74 -0.98 MLP4 0.72 10.72 |0.44 0.23 0.06 0.0 0.0
mttri 0.75/0.72 |0.51 0.28 -0.12 -0.84 -1.17 mttri 0.75(0.72 |10.51 0.29 0.08 0.0 0.0
MDS Books |LogReg 0.70 |0.68 {0.41 0.23 0.10 0.02 0.01 MDS Books |LogReg 0.70 |0.68 {0.41 0.23 0.11 0.01 0.0
MLP1 0.69 [0.66 {0.38 0.13 0.01 -0.02 -0.01 MLP1 0.7 10.66 {0.39 0.2 0.0 0.0 0.0
MLP4 0.7 10.68 |0.39 0.15 -0.17 -0.67 -0.86 MLP4 0.69 {0.68 |0.37 0.09 0.0 0.0 0.0
mttri 0.74|0.71|0.48 0.25 -0.16 -0.87 -1.21 mttri 0.74|0.71|0.48 0.26 -0.01 0.0 0.0
MDS Kitchen | LogReg 0.78 10.77 |0.56 0.37 0.18 0.06 0.03 MDS Kitchen | LogReg 0.78 |0.77 |0.56 0.41 0.27 0.15 0.13
MLP1 0.76 {0.75 |0.53 0.34 0.16 0.07 0.04 MLP1 0.76 {0.75 |0.51 0.34 0.2 0.1 0.01
MLP4 0.76 {0.76 |0.52 0.31 0.01 -0.48 -0.68 MLP4 0.750.76 |0.50 0.30 0.12 0.0 0.0
mttri 0.82]0.83|0.64 0.49 0.23 -0.19 -0.38 mttri 0.82]0.83|0.64 0.49 0.23 0.10 0.0

4.2 Results

Q1: Accuracy and F1l-score are poor indicators of model value We
first investigate whether standard performance metrics are sensible indicators of
the model value, and how this depends on the magnitude of the cost factor k.
Following the simplification in Section 3.2, we set V. = 0 and V., = 1, and use the
threshold in Eq. 7 to decide whether to accept each prediction given a certain k.
Table 1 reports results in terms of accuracy, F1-score, and value for different
values of k € [0,10]. As expected, the value of a model decreases substantially
with the increase of the cost factor, with many models achieving negative value
(i.e., it is better to simply ignore the model altogether) for larger values of k.
We would like to stress that the cost factors we considered are fairly small and
definitely realistic. For instance, setting &k = 4 means that “being wrong is 4 times
as bad” with respect to the advantage of being right. Many scenarios have values
of k way more extreme (e.g., in medical decision support systems [60]). Notice
that accuracy corresponds to the case where we do not reject any predictions
(i.e. k = 0), a rather unrealistic scenario. Another major finding is that accuracy
is a quite poor proxy of value even in relative terms. Boldface numbers indicate
the best-performing model in terms of the different metrics. It is clear that the
best-performing model is largely dependent on k, and that accuracy quickly
becomes totally unreliable as a metric to identify the most appropriate model
to employ. Replacing accuracy with F1l-score doesn’t change much. While we do
observe substantially lower values for the unbalanced datasets (Hate Speech and
Clickbait), the best-performing model is unchanged almost everywhere.

Q2: Cost-sensitive error is a poor indicator of model value in cost-
sensitive settings The previous evaluation assumed equal cost for the different
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types of error. This is however rarely the case in practical applications, where
false negative errors (e.g., undiagnosed diseases) can be far more costly than false
positive ones (i.e., false alarms). Section 3.4 shows how to adapt value to this
cost-sensitive setting, and how to determine cost-sensitive thresholds that are
specific for each predicted class. In the following, we evaluate the value of mod-
els in this cost-sensitive setting. We replace accuracy and F1, which are clearly
inappropriate in this setting, with cost-sensitive error [20] a popular performance
measure in the cost-sensitive learning literature. Cost-sensitive error is obtained
by computing the weighted sum of errors, with the weights given by the corre-
sponding cost, i.e. (Ntnksn+ Nspksp)/|D|, where we divide by |D| to remove the
dependency on the size of the dataset. For simplicity, and consistently with com-
mon practice in the literature, we set ks, = 1 and vary ky,, € [1,10]. Results are
shown in Table 3. While cost-sensitive error identifies different best-performing
models for different values of the cost, in only one case (MDS Kitchen) it consis-
tently agrees with value across the spectrum of costs. What is worse, for large
values of ky, it often detects as best performing models that actually achieve
negative value, making it a poor indicator of model value. The problem is not
how it treats the costs of different errors, but in the fact that it does not assume
a selective classifier and a corresponding cost-sensitive rejection threshold, which
is the main practical contribution of our definition of value. This also implies
that cost-sensitive learning [28], which aims at training classifiers to minimize
cost-sensitive error, should be coupled with learning to reject mechanisms [31]
to be fully effective in optimizing the value of the learned models.

Q3: Lack of calibration substantially affects model value The threshold
in Eq. 7 assumes that models are perfectly calibrated, which is often far from

Table 4: Comparison of acc., F1-
Table 3: Comparison of cost-sensitive error and score and value in OOD setting.

Task Model |Ace |F1 Value for k=7

value for k = kg, and kgp = 1. L2 4 8 10
Sostonsiiioe orror Vel Tor =7 MDS Elect. |LogReg |0.76 [0.74 [052 034 0.16 0.05 0.03
Task Model |, _ “Po v e T e MLPL  [0.74 [0.71 [0.5 033 0.18 0.08 0.06
: ] - MLP4  [0.74 0.71 [0.47 0.24 -0.14 -0.78 -1.06
Haic Specch |Badj. ot a1 [0.18 0.3 053 101 125 [0.64 0.54 0.39 0.31 0.28 meei lost 1079 1062 044 015 035 -0.58
] Agr.etal [0.27 032 0.43 0.64 0.75 |046 040 032 0.16 0.10 5 078 1076 1057 035 0.08 -0.94 135
Clickbait Tullnetconc|0.14 0.22 0.38 0.69 0.84 |0.71 0.61 037 0.13 0.10 SieBERT|0.84|0.83|0.68 0.58 0.22 -0.4 -0.70
weNet  [0.15 0.23 039 071 0.87 [0.70 0.60 0.38 0.12 0.09 GPT-3 1082 |0.80 [0.64 0.5 0.32 0.13 0.05

lingNet 018 0.29 052 098 121 |0.64 047 0.12 0.05 0.05 MDSDVD [TogReg [0.74 [0.74 [0.45 0.28 0.12 0.04 0.03

fullNet  |0.14 0.23 042 078 0.96 |0.71 0.63 0.45 0.15 0.10 MIPL 073 |0.73 [0.46 027 013 0.05 0.04
MDS Elect. |LogReg 024 041 0.74 141 1.75 0.52 0.44 0.35 0.29 0.28 MLP4 0.72 10.72 |0.44 0.20 -0.16 -0.74 -0.98
MLP1 026 044 079 15 185 |05 041 034 028 0.27 mttri 0.75 |0.73 [0.51 0.28 -0.12 -0.84 -1.17
MLP4  [0.25 042 0.74 14 173 |047 0.33 0.09 -0.31 -049 T 0.79 [0.79 [0.58 0.37 -0.06 -0.9 -1.32
mitri 0.19 0.33 0.61 1.16 1.44 |0.62 0.49 0.20 -0.08 -0.24 SieBERT|0.84|0.83|0.67 0.51 0.19 -0.44 -0.75
MDS DVD  |LogReg  |0.26 0.39 066 1.20 1.47 |048 0.7 0.29 0.25 0.25 GPT-3 |0.83 |0.82 |0.66 0.53 0.37 0.16 0.09
MLP1 027 040 067 1.20 147 |0.46 0.36 0.3 0.26 0.25  MDS Books |LogReg |0.7 |0.68 [0.41 0.23 0.10 0.02 0.01
MLP4  [0.28 0.39 0.62 1.07 1.30 |0.44 033 0.16 -0.09 -0.19 MLP1 |07 |0.66 -0.02 -0.01
mtri 0.25 041 074 141 174 |0.51 0.35 0.07 -0.43 -0.66 MLP4 069 |0.68 -0.67 -0.86
MDS Books |LogReg 0.3 049 0.87 164 2.03 |04l 0.33 0.27 0.22 0.22 mttri 0.7410.71 -0.87 -1.21
MLP1 0.30 0.49 0.87 163 200 |0.38 0.27 0.2 0.18 0.18 Ts5 0.7710.79 10.54 0.31 -0.15 -1.07 -1.52
MLP4 031 049 0.83 1.52 1.87 [0.39 0.26 0.08 -0.18 -0.28 SieBERT 0.830.8310.65 0.48 0.14 -0.55 -0.88
mitri 0.26 0.45 0.83 1.60 199 |0.48 0.32 0.02 -0.52 -0.79 _ GPT-3 081 |0.81 |061 046 0.27 0.08 0.01

MDS Kitchen|LogReg 022 034 0.6 L11 1.36 [0.56 0.47 0.36 0.31 0.29 MDS Kitchen| LogReg 10.78 10.77 10.56 0.37 0.18 0.06 0.03
MLP1 024 037 064 117 144 |0.53 043 034 029 0.28 MLPL 076 10.75 10.53 0.34 0.16 0.07 0.04
MLP4 (025 039 066 122 15 |0.52 0.42 0.26 0.03 -0.08 MLP4-10.75 10.76 1052 0.31 0.01 -0.48 -0.68
) mttri [0.82 0.83 [0.64 049 023 -0.19 -0.38
mitri 0.18 0.24 0.35 0.59 0.71 |0.64 0.59 0.50 0.38 0.31 b 078 1077 055 033 011 101 145
SieBERT|0.86]0.86|0.73 0.59 033 -0.19 -0.45
GPT-3 [0.85 |0.85 [0.71 0.6 0.46 0.31 0.25
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being true for trained models, and deep learning models in particular [24]. In
order to evaluate the role of calibration in determining the wvalue of a model,
we apply temperature scaling [24], a simple yet effective recalibration technique,
to each model before applying the threshold (the resulting selector is shown
in Figure 3(c)). Table 2 reports the results in exactly the same setting as Ta-
ble 1, but using recalibrated models. Notice that accuracy and Fl-score are
unchanged, as temperature scaling affects the confidence in the prediction but
not how classes are being ranked. In terms of wvalue, however, we observe an
overall improvement, quite substantial for larger values of k. The degenerate
behavior of models with negative values is almost completely eliminated, with
"useless" models receiving a wvalue of zero. These results suggest that learning
models should always be recalibrated before being incorporated into practical
workflows. This does not mean that one can then resort to standard metrics to
choose which model to employ. The best-performing model is still largely depen-
dent on k. Notice that in the domain adaptation scenarios (MDS tasks), simple
logistic regression (LogReg) consistently outperforms all other models for large
values of k, as expected. Logistic regression is known to be a well-calibrated
model per-se [37], and temperature scaling likely further improves this behav-
ior, while more complex models struggle to achieve comparable calibration with
simple recalibration strategies. The lively research area of calibration in ML and
especially deep learning can provide useful solutions to this problem [58].

Q4: Operating in an OOD setting substantially affects model value
The lack of calibration in ML models is known to be particularly harmful when
the model operates in an OOD setting [64, 70], and the results on the domain
adaptation tasks in Table 2 confirm this issue. To better understand the role of
the OOD setting in determining the wvalue of models, we focused on the MDS
tasks and complemented the set of models presented in Table 2 with state-of-
the-art transformer models, which should be less affected by the problem given
the huge corpora they are trained. The employed transformer models are:

— Google’s T5-base!! [49] (12-layers, 768-hidden-state, 3072 feed-forward hidden-
state, 12-heads, 220M parameters) fine-tuned on IMDB dataset!'? [42] for
sentiment analysis task.

— SieBERT!3 [29]: a fine-tuned version of RoBERTa-large!® model [41] (24-
layer, 1024-hidden-state, 16-heads, 355M parameters) for sentiment analysis
task that is fine-tuned and evaluated on 15 diverse text sources.

— GPT-3 [8]. Since it is producing human-like text for a given input, we fine-
tuned it using the OpenAI API'>. First, we prepared the MDS dataset for
GPT-3; we cleaned sentences that have more than 2049 tokens, and renamed

" https://tinyurl.com/t5-base-finetuned-sentiment
12 huggingface.co/datasets/imdb

13 https://tinyurl.com/SieBERT-sentiment

1 https://huggingface.co/roberta-large

!5 https://openai.com/api/
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the text column as “prompt” and the ground truth column as “completion”.
Then, we used the OpenAI API to fine-tune GPT-3 separately on each of the
4 domains (DVD, books, electronics, and kitchen). We specified “number of
classes” as 2 and the “positive class” as ‘1’ so that the API tunes GPT-3 for
binary sentiment analysis. Fine-tuning 4 models on the MDS dataset cost
a total of $7.15. In order to test the fine-tuned models on different target
domains, we specified the prompt in the format of "sentence + -> " because
the APT itself uses " ->" sign to teach GPT-3 that the sentiment for a prompt
is (" ->’) the completion. Thus, fine-tuned GPT-3 models produce either 0 or
1 for the given input. Testing each fine-tuned model on the other 3 domains
(so, 12 cases in total) costs $43.89. We provide our source code on Github!6
to show every step of using GPT-3 in our experiments.

Table 4 reports the results of all models on the MDS tasks. As expected,
large pre-trained language models tend to perform well across the board. This
can be due to two reasons (besides the models being very powerful): (i) we
know that very large models with very large train datasets are reasonably well
calibrated (e.g. [33]), and (ii) when the training data is so large, fewer examples
are out of distribution in terms of language. For example, GPT-3 8] is trained
on about 45TB of text data from various datasets, and the vocabulary of the
MDS datasets is most likely already present in its training set.

Notice however that even for these models, accuracy is a poor proxy of value
when £k is large. Indeed, SieBERT slightly outperforms GPT-3 in terms of both
accuracy and F1 in all tasks. However, the situation is reversed for large values
of k, with SieBERT reaching negative values in most cases, most likely because
of a poorer calibration with respect to GPT-3. Finally, simple linear models
occasionally outperform these powerful (and very expensive to employ) large-
language models for the largest values of k, again confirming the importance of
value in determining the most appropriate model for the situation at hand.

5 Limitations and Conclusion

The takeaway from our experiments is that using accuracy-oriented metrics in
hybrid decision-making systems is a risky proposition - and this is true even for
models widely acknowledged as “leaders”. We should constantly assess models
over a range of cost factors, and at least for reasonable cost factors we expect
based on the set of application use cases we are targeting. k = 0 (accuracy) is
rarely a reasonable one. We also saw how applying models without thresholding
can lead to a negative value, and that threshold tuning seems to perform bet-
ter than calibration. We also hypothesize and have obtained some support for
identifying complexity and out-of-distribution as factors that may lead to rapid
model quality degradation for higher cost factors.

This being said, we see this work more as providing evidence of a problem
and outlining the research needs: more studies (especially with large models and

16 https://tinyurl.com /rethinking-value-of-ml-models
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in vs out of distribution datasets) are required to validate the hypothesis and
a deeper understanding of how calibration, confidence distribution, and size of
validation set affect model value.
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