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Abstract. In the era of big data in scientific research, there is a neces-
sity to leverage techniques which reduce human effort in labeling and
categorizing large datasets by involving sophisticated machine tools. To
combat this problem, we present a novel, general purpose model for 3D
segmentation that leverages patch-wise adversariality and Long Short-
Term Memory to encode sequential information. Using this model along-
side citizen science projects which use 3D datasets (image cubes) on
the Zooniverse platforms, we propose an iterative human-machine op-
timization framework where only a fraction of the 2D slices from these
cubes are seen by the volunteers. We leverage the patch-wise discrimi-
nator in our model to provide an estimate of which slices within these
image cubes have poorly generalized feature representations, and corre-
spondingly poor machine performance. These images with corresponding
machine proposals would be presented to volunteers on Zooniverse for
correction, leading to a drastic reduction in the volunteer effort on cit-
izen science projects. We trained our model on ∼ 2300 liver tissue 3D
electron micrographs. Lipid droplets were segmented within these im-
ages through human annotation via the ‘Etch A Cell - Fat Checker’
citizen science project, hosted on the Zooniverse platform. In this work,
we demonstrate this framework and the selection methodology which re-
sulted in a measured reduction in volunteer effort by more than 60%. We
envision this type of joint human-machine partnership will be of great
use on future Zooniverse projects.

Keywords: Generative model · human-machine optimization · volume
segmentation.

1 Introduction

Improvements in data collection methodology such as robotic surveys in astro-
physics, or electron microscope advancements in bio-medicine, have led to an
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unprecedented growth in data production rates [10, 8]. The analysis of much of
these data still requires human effort. Hence, to efficiently analyze these large
datasets, it is critical to consider leveraging human-machine optimization frame-
works, such as active learning strategies with human-in-the-loop ideologies [4, 9].
One possible framework is to (1) use a machine model to provide an initial anal-
ysis of the data; (2) identify poorly performing data; (3) present this subset of
data to humans for correction; and (4) use the human-corrected data to refine
the machine. Such a framework would enable fast processing of large amounts
of data, speeding the analytical pipeline and ensuring more efficient application
of human effort. However, one of the greatest challenges in implementing such a
framework is the accurate identification of data with poor machine performance,
particularly when ground truth labels are unavailable. While uncertainty predic-
tion has become a strong component of new machine/deep-learning studies [5],
most existing techniques work well for classification tasks [3]. Generative models
are much more difficult due to their more complex architectures and training
regiment and would likely require more sophisticated training [2]. In this work,
we focus on using ad-hoc methods within the generative model (primarily the
learnt adversariality), as a proxy for machine uncertainty.

In this study, we use data from the Etch A Cell - Fat Checker project5, which
is a cell biology citizen science project hosted on Zooniverse.org to identify lipid
droplets in electron micrographs. Using this project as a case study, we show
how machine models can be used to predict which data may benefit from hu-
man analysis. To satisfy the dual role of improving the completion rate of the
project by using machine models to classify large fractions of the data and to
determine poorly performing data to present to volunteers, we present the Tem-
poral Cubic Patch Generative Adversarial Network (TCuPGAN), a generative
model that works on image cubes (3D images, like volume electron microscopy
data) or video data to do 3D segmentation. We apply our model to data from
the Etch a Cell - Fat Checker project and present our results from testing our
framework on this dataset. In this study, we use the discriminator component
as a method for identifying poorly performing data (i.e., those that generalize
poorly between the input image cube and the target segments). Our selection
method can identify either image cubes or individual slices which show poor ma-
chine performance; these can be shown to the volunteers for refinement, thereby
significantly reducing both the project completion time and the volunteer effort.

2 Methods

We demonstrate our work on the TCuP-GAN, which is based on a generative
Image-to-Image translational model [PatchGAN; 6]. PatchGAN is 2D image
segmentation model, which uses the U-Net architecture, and features both a
generative and discriminative component. In our model generator, we replace
the 2D convolutional layers in the PatchGAN architecture with 2D convolutional
Long Short-Term Memory (LSTM) layers to simultaneously capture both the

5 https://www.zooniverse.org/projects/dwright04/etch-a-cell-fat-checker

https://www.zooniverse.org/projects/dwright04/etch-a-cell-fat-checker
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2D spatial information in each slice as well as the correlations along the third
dimension (depth axis in image cubes, or time axis for videos). The LSTM
layers extract both the feature vectors (ht, which encodes the image features as
a function of depth/time) and the cell state (c, which captures the cumulative
spatial correlation of the features across the depth/time axis) [7]. Subsequently,
the learnt features encode both temporal (or depth-wise) and spatial correlation
information. We skip both the h and the c vectors across the bottleneck from
the encoder to the decoder as part of the U-Net architecture.

The discriminator is a patch-wise binary classifier that takes a concatenation
of the input image and its corresponding ground truth or generated mask and
outputs a 8× 8 probability matrix per depth slice. The discriminator is a series
of 3D convolutions with kernel size (1, 3, 3), followed by Layer Normalization.
We use the LeakyReLU activation with α = 0.2 for all layers except the final
convolutional layer, which has a Sigmoid output on a single channel. Each unit
of the output of the discriminator represents a patch of the input image, and
provides the probability that the patch is real. For each slice, we take the mean
and variance of its discriminator scores for our test metrics.

2.1 Etch-a-Cell: FatChecker data

To train the model, we use data from Etch a Cell - Fat Checker where volun-
teers are presented with individual 2D slices and asked to annotate the lipid
droplets. We aggregate the volunteer responses [8] and build the image cube by
stacking the 2D images and their corresponding masks. This Zooniverse project
presents 1200×1200 pixel sized 2D image slices to the volunteers, who annotate
the outline of the lipid droplets. For each 2D slice, a binary consensus mask is
generated by aggregating the annotations of multiple volunteers [8], where pixels
corresponding to lipid regions are indicated by 1 and background is 0. In this
work, we stack these different 2D slices to generate their corresponding 3D im-
age cubes with sizes 1200× 1200× 10. We then augment these cubes by resizing
them to 512 × 512 × 10 and applying a TenCrop routine to generate 5 overlap-
ping crops of sizes 256 × 256 × 10 (positioned at center, top-left, bottom-left,
top-right, bottom-right) and their respective vertical flips. This yields a total
of 2270 image cubes with final dimensions of 256 × 256 × 10. We use the Focal
Tversky Loss [FTL; 1]) to train the model, which is a generalized version of the
Tversky Loss (TL) defined in terms of the Tversky Index (TI) as,

TI = TP/(TP + αFN + βFP ) → TL = (1− TI) → FTL = (TL)γ (1)

where TP , FN and FP are the true positive, false negative and false positive
pixels in each slice. The γ parameter guides the model to focus on harder (γ < 1)
vs. easier (γ > 1) examples. We use α = 0.7, β = 0.3 and γ = 0.7. For the
discriminator optimization, we use the Binary Cross-Entropy (BCE) loss.
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Fig. 1. Results from our study. (a) Histogram of mean discriminator scores per slice.
(b) Distribution of mean and variance in discriminator score, per slice, with the corre-
sponding segmentation loss. We can use this distribution to make cuts on which slices
to show volunteers (region left of the black line). (c, d) Comparison of slices with high
discriminator score (more realistic, c) vs low discriminator score (less real, d), with the
rows in order showing the input image slice, mask from aggregating volunteers’ anno-
tations, the machine predicted segmentation and the patch discriminator output. Blue
regions correspond to high discriminator value (more real), while red is low discrim-
inator value (less real). Note how the poorly performing subjects show large feature
confusion within the image necessitating further refinement by volunteers.

3 Results

The model accuracy, precision and recall are 89.1%, 49.3% and 65.4%, respec-
tively. On Zooniverse, volunteers were asked not to annotate lipid droplets that
were not fully visible, but due to our augmentation methods (i.e., cropping of
the image cubes) there were cases where partially cropped lipid droplets were
shown to the model. As a result, the model learnt to pick up lipid droplets on the
edges where volunteers did not annotate any, leading to the reduced precision.

Figure 1 presents the test of our proposed framework: panel (a) shows the
distribution of discriminator scores for the subjects in our model, panel (b)
shows the relation between the discriminator and segmentation loss, and panels
(c) and (d) show the comparison of image cubes with high (i.e., more realistic
segmentation) and low (i.e., more unrealistic/poorly generalized segmentation)
discriminator scores, respectively. It is clear that the discriminator has learnt
the features corresponding to the lipid droplets (dark circles in the image), and
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is able to effectively identify where the generator fails to predict these droplets.
In fact, the discriminator is able to also show which locations in the image
correspond to poor generalization (blue is more real, while red is more fake).
The red regions correspond to features that the generator needs to get better at
identifying. Images with large red regions can be passed to volunteers to refine
the generator’s annotation and improve the machine accuracy from re-training.

Figure 1a shows the histogram of discriminator scores for each slice in the
dataset (with 1 being very realistic and 0 being unrealistic). We found that
while the histogram shows that there are several slices with low discriminator
scores (i.e., more unrealistic), there is better separability between slices when
we also incorporate the 2D variation in the discriminator score per slice (see
Figure 1b). The selection cut described above can the be done by investigating
the relation between the mean and the variance in the discriminator score and
segmentation loss (Figure 1b). A high discriminator mean corresponds to a more
realistic image, while high discriminator variance points to large variation in the
generator’s performance for that cube. These values are correlated with the
segmentation loss TL (i.e., high mean and low variance generally correspond
to low segmentation errors), and vice-versa. We can use a selection cut on the
discriminator score that would preferentially pick poor performing images and
pass it to the volunteers for refinement. For, example, the selection cut proposed
in Figure 1b is obtained by choosing a sample of slices with TL < 0.3, which
produces 9362 slices out of the total of 22700 (a decrease of 64% in the number
of images shown to volunteers).

4 Conclusions

We have developed the TCuPGAN, a Convolutional LSTM-based image cube/video
segmentation model that simultaneously learns both the 2D spatial and tempo-
ral (or depth) signatures of the data. We applied this model on a dataset of
microscopy images of the liver tissues from the Etch a Cell - Fat Checker citizen
science project on Zooniverse to identify lipid droplets. We find that the adver-
sarial component of the model is effective at identifying slices with poor machine
segmentation, and these slices can be provided to the volunteers to correct the
machine annotation. Future directions of this work will include deploying a live
test project on Zooniverse with this ‘correct-a-machine’ framework to test the
increase in project completion rates; we anticipate that this test will increase
the applicability of this model to other use cases on the Zooniverse platform and
further reduce the number of images seen by volunteers.
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