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Abstract. Algorithmic Recourse (AR) is the problem of computing
a sequence of actions that – once performed by a user – overturns an
undesirable machine decision. It is paramount that the sequence of actions
does not require too much effort for users to implement. Yet, most
approaches to AR assume that actions cost the same for all users, and
thus may recommend unfairly expensive recourse plans to certain users.
Prompted by this observation, we introduce PEAR, the first human-in-
the-loop approach capable of providing personalized algorithmic recourse
tailored to the needs of any end-user. PEAR builds on insights from Bayesian
Preference Elicitation to iteratively refine an estimate of the costs of
actions by asking choice set queries to the target user. The queries
themselves are computed by maximizing the Expected Utility of Selection,
a principled measure of information gain accounting for uncertainty
on both the cost estimate and the user’s responses. PEAR integrates
elicitation into a Reinforcement Learning agent coupled with Monte
Carlo Tree Search to quickly identify promising recourse plans. Our
empirical evaluation on real-world datasets highlights how PEAR produces
high-quality personalized recourse in only a handful of iterations.

Keywords: Algorithmic Recourse · Counterfactuals · Preference Elicita-
tion · Explainable AI

1 Introduction

Automated decision support systems are increasingly employed in high-risk
decision tasks with the aim of empowering human decision-makers and improving
the quality of their decisions. Example applications include bail requests [9],
loan approvals [37], job applications [24], and prescription of medications and
treatments [52]. Despite their promise, often these systems are opaque – meaning
that users, and even engineers, have trouble understanding and controlling their
decision process – and provide no means for overturning unwanted outcomes,
such as denied loan requests. One way of addressing these issues is through
the lens of Algorithmic Recourse (AR) [42,20]. In AR, given an undesirable
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machine-generated decision, the goal is to identify a sequence of actions – or
interventions for short – that once implemented by the user overturns said
decision, for instance, changing jobs or obtaining a master’s degree. Motivated
by this, a number of approaches have been recently proposed for computing AR
[7,29,19,34,51,41,18,40,36,28,49,6].

It is critical that the suggested recourse plans are not too difficult or expensive
to carry out. This entails that recourse should be personalized, because different
users in the same situation may need substantially different recourse plans. To
see this, consider a user who is denied a loan. Based on a profile made by the
financial institution, an AR algorithm might suggest the user to reduce their
monthly expenses. However, unlike the “average” customer, our user is incurring
high medical expenses because they recently contracted an invalidating illness.
Thus, the AR suggestion is highly inappropriate. Clearly, it is impossible to infer
such a constraint from their profile alone. Equally importantly, actions influence
each other’s costs – e.g., obtaining an additional degree can dramatically lower
the cost of landing a better-payed job – and we need to account for this if we wish
to minimize the cost of recourse. Most approaches, however, completely neglect
the user’s own preferences. The few that do require feedback that is difficult to
obtain in practice, e.g., preferences over a large pool of alternatives [36,28,49,6]
or upfront quantification of action costs [50,19,35,49,26].

We argue that algorithmic recourse should make users first-class citizens in
the recourse generation process rather than viewing them as passive observers.
To this end, we introduce PEAR (Preference Elicitation for Algorithmic Recourse),
the first human-in-the-loop approach for generating personalized recourse tailored
for a target end-user. Our algorithm integrates AR and ideas from interactive
Preference Elicitation (PE) [5,2,3,13,45,8] in a fully Bayesian setup. PEAR goes
beyond existing approaches in that the costs of actions are estimated from user
feedback and prior information. In each iteration, PEAR identifies a small selection
of alternative interventions – a choice set – that optimizes a sound measure
of information gain (the Expected Utility of Selection (EUS) [45,46]) and then
asks the user to pick their preferred option. Using this feedback, PEAR quickly
improves its estimate of the user’s preferences and generates interventions that
get progressively closer to the user’s ideal. See Fig. 1 for an overview.

Contributions: Summarizing, we:

– Introduce the problem of personalized algorithmic recourse, and show that
existing approaches are insufficient to solve it.

– Develop PEAR, the first human-in-the-loop, Bayesian approach for computing
personalized interventions that is robust to noise in user feedback and minimizes
user effort.

– Evaluate PEAR on synthetic and real-world datasets and show that it can
generate substantially – up to 50% – cheaper interventions than user-agnostic
competitors after only a handful of queries.
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Fig. 1: Overview of PEAR. (1) Given the initial state s(0) of the user and weights
w(0), PEAR computes a pool of candidate interventions achieving recourse. (2) A
choice set O(t) is selected from the pool and presented to the user. (3) The user
picks their preferred intervention from the set. (4) An improved estimate of the
weights w(t+1) is computed using this feedback, and (5) the user’s state s(t+1)

is updated. After T rounds, the estimated weights are used to compute a final
intervention I∗.

2 Problem Statement

The user state s ∈ S ⊆ Rd is a vector of d categorical and real-valued features
encoding, e.g., instruction level and income. An action a ∈ A is a map that
takes a state s and changes a single feature, yielding a new state s′ = a(s),
and expresses a recommendation of the form “Increase your income by $100.”
Given a (black-box) binary classifier5 h : S → {0, 1} and a user state s leading
to an undesirable decision y = h(s), AR computes an intervention – i.e., an
ordered set of actions I = {a(1), . . . , a(|I|)} – that can be applied to s to obtain
a counterfactual state s′ associated to a more desirable outcome h(s′) ̸= y, all
while minimizing user effort.

Approaches to AR assume the user effort is proportional to the number
of actions that need to be carried out, and minimize it by searching for short
interventions I. However, this is unrealistic and impractical. For instance, changing
job into a highly skilled one may not be realistic without obtaining a Master’s
degree first. Motivated by this, we introduce a new problem setting, denoted
personalized algorithmic recourse:

Definition 1 (Personalized Algorithmic Recourse). Given a black-box
binary classifier h and a user state s, acquire a cost function C(I | w) for
interventions such that the intervention I∗ obtained by solving the following
optimization problem:

I∗ ∈ argminI C(I | w) s.t. h(I(s(0))) ̸= h(s(0)) (1)

5 It is straightforward to adapt our approach to deal with multiclass classification
problems.
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has minimal regret for the target user, defined as:

Reg(I∗, IGT) = C(I∗ | wGT)− C(IGT | wGT) (2)

where wGT encodes the ground-truth but unobservable preferences of the user and
IGT is the “ideal” intervention that would be obtained by solving Eq. (1) using
wGT.

The similarity of Eq. (1) to existing formulations of AR can be misleading, as
here the key challenge is that of obtaining weights w that reflect the user’s own
preferences. We discuss how PEAR does so in Section 4.

3 Related work

Counterfactual explanations (CEs) are a class of local, human-understandable
explanations [48,4] that convey information about changes to input variables that
overturn a machine decision [12,39]. AR aims to identify actionable CEs that
attain recourse for the user [43,19]. Existing approaches to AR solve Eq. (1) via
diverse optimization methods [48,34,32,29,36,28,49,6] or by learning a general
policy [51,7,44]. Most methods simply return a set of actions, disregarding their
order. However, recent research showed that ignoring the causal relationship
between features prevents reaching optimal recourse [20]. Some methods thus
optimize for recourse plans, i.e., sequences of actions attaining recourse, following
a causal setup [41,20,21,7,29,26]. PEAR follows this paradigm and considers the
interplay between features when finding recourse.

Most AR approaches assume that the cost function is fully specified beforehand
[48,34,35,49,26], ignoring the problem of modelling user preferences altogether.
The few that explicitly deal with user preferences do so in a naïve manner. Some
of them [36,28,6,50] ask users to pick their preferred option from a large pool of
user-agnostic recourse plans, that is not guaranteed to contain a low-cost option
for the user. This is also impractical, as users can only properly evaluate a limited
number of alternatives at a time [38,27]. Others require users to quantify the cost
of each possible action upfront [19,35,49,26], or via numerical constraints [32,49],
yet end-users can rarely articulate their preferences in a quantitative manner [22].
PEAR sidesteps this issue by learning preferences from ranking data, i.e., relative
judgments of the form “I prefer option A to option B” [11].

AR is specifically concerned with high-stakes scenarios, such as loan requests,
that users face at most a handful of times in their lifetime. In these settings, it
is impossible to estimate user preferences from historical data. In recommender
systems, this issue has been solved through preference elicitation, whereby the
user’s preferences are estimated through a human-friendly interaction protocol
[2]. In order to converge to high-quality options with minimal user effort, PE
algorithms select queries (i.e., questions to the user) that maximize information
gain and that are easy to answer. A popular option is choice queries, in which
the user has to select a preferred item from a small set of alternatives. PEAR
builds on Bayesian PE methods, as they account for imprecision in users’ answers
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[5,13,45] in a principled way by measuring the information gain of choice sets in
terms of Expected Utility of Selection [46]. Similarly to PEAR, [35] estimate cost
weights from preference feedback. However, they collect feedback from domain
experts in a non-interactive fashion and learn population-level preferences that
are not personalized, thus failing to minimize Eq. (2). Population-level estimates
can lead to recourse that is largely suboptimal for specific individuals, as will be
shown in our experimental evaluation.

4 Personalized Algorithmic Recourse with PEAR

Before describing PEAR, we discuss how we model the user’s preferences and
how these impact the costs of actions and interventions. We formalize the user
effort required to perform an action as a cost function C : A × S → R+. In
order to account for interactions between action costs, we model C using a linear
Structural Causal Model (SCM) [31] parameterized by weights w. This SCM is
a directed graph where each node is associated with the cost wk of changing
a single feature sk and each edge represents a causal relationship between two
costs, parameterized by wjk ∈ R.

Then, following the structural assignments induced by the SCM, we define
the cost of applying an action ak to a state s to change the k-th feature from sk
to s′k as a linear combination:

C(ak, s | w) = wk|s′k − sk|+
∑

j ∈ Pak
wjksj (3)

Here, Pak are the parents of the k-th node in the graph. An example of cost
function is shown in Fig. 2. The cost of an intervention is the sum of the costs of
all actions it contains, that is:

C(I | w) =
∑|I|

i=0 C(a(i), s(i) | w) (4)

Here, s(i) is the state obtained by applying action a(i−1) to state s(i−1), and
s(0) = s is the initial state. We denote with I(s(0)) the operation of applying each
action a ∈ I sequentially. Eq. (3) does not define a simple linear model, but it
accounts for a richer set of interactions. For example, given two actions a1 and a2,
their cost is not additive, meaning C(a1, s | w)+C(a2, s | w) ̸= C({a1, a2}, s | w).
We can show it with a simple example.

Example of non-additivity of Eq. (3). Consider a simple SCM with
two nodes s1 → s2, with s = (s1, s2) and w = (w1, w2, w12), and an instance
s = (1, 1) and w = (1, 0.5, 1). We define two actions, a1 and a2, which simply set
the corresponding features si to 2. Using Eq. (3), we can compute the cost of
applying the single action as

C(a1, s | w) = 1|2− 1| = 1 C(a2, s | w) = 0.5|2− 1|+ 1 = 1.5 (5)

By Eq. (4), the cost of the intervention {a1, a2} is C({a1, a2}, s | w) = 3.5 ̸=
1.5+1, hence the costs are not additively independent. Moreover, Eq. (4) considers
the order in which actions are applied, i.e., ∃ w such that C({a1, a2}, s | w) ̸=
C({a2, a1}, s | w), as shown in Fig. 2(b).
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Fig. 2: The cost model (Left) A Linear Structural Causal Model for cost
modelling. (Right) Given s(0) = [1, 1, 1] and unit w, let us imagine we want
to reach s(3) = [5, 5, 5] by following the presented SCM and the intervention
I = {a1, a2, a3}, where ∀ i ai assign si ← 5. Clearly, we incur different costs
by applying permuted versions of I. The green path indicates the lower-cost
intervention.

4.1 The PEAR Algorithm

In order to account for uncertainty over the user’s weights w, PEAR explicitly
models a distribution P (w) over them and progressively refines it by interacting
with a target user. A high-level overview of PEAR is given in Fig. 1 and the
pseudo-code is listed in Algorithm 1.

In each iteration t = 1, . . . , T , where T is the iteration budget, PEAR computes
a choice set O(t) ∈ Ik containing k candidate interventions achieving recourse (for
a small k, e.g., 2 to 4) and asks the user to indicate their most preferred option in
the set. Importantly, O(t) is chosen so as to maximize the (expected) information
gained from the user, and in a way that is robust to noise in their feedback. We
detail the exact procedure used by PEAR in Section 4.3. These user choices are
stored in an initially empty dataset D(t). In each step, PEAR integrates the user’s
feedback by inferring a posterior over the weights P (w | D(t)) ∝ P (D(t) | w)P (w)
using Bayesian inference, and updates the user state by applying the first action Î1
of the chosen intervention. We apply a single action so as to elicit user preferences
in all intermediate states. If a state achieving recourse is reached, the user state is
reinitialized. After T rounds,6 PEAR computes a low-cost personalized intervention
by applying the intervention generation procedure described in Section 4.2, biased
according to the latest posterior p(w | D(t)).

PEAR makes no assumption on the form of the prior P (w), meaning that the
prior can be adjusted based on the application. In order to model both variances
across the preferences of individuals and for sub-groups in the population, in this
work we model it as a mixture of Gaussians with M components Ni(µi,Σi), for
i = 1, . . . ,M . This choice works well in our experiments, see Section 5. Note that,
6 In practice, the loop can be terminated as soon as the user is satisfied with one of

the interventions in O(t).
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Algorithm 1 The PEAR algorithm: h : S → {0, 1} is a classifier, s(0) ∈ S the
initial state, A the available actions, p(w) the prior, T ≥ 1 the query budget,
k ≥ 2 is the size of choice sets.

1: procedure PEAR(h, s(0),A, T, k)
2: Initialize t← 0, D(0) ← ∅
3: for t = 1, . . . , T do
4: O(t) ← SUBMOD-CHOICE(h, s(t−1),A, k,D(t−1)) ▷ Algorithm 2
5: Ask the user to pick the best intervention Î ∈ O(t)

6: D(t) ← D(t−1) ∪ {Î}
7: Update weight estimate p(w | D(t))
8: s(t) ← Î1(s

(t−1))
9: if h(s(t)) ̸= h(s(0)) then

10: s(t) ← s(0)

11: I∗ = W-FARE(h, s(0),w∗) with w∗ = EP (w|D(T ))[w] ▷ Section 4.2
12: return I∗

analogously to [35], it is also possible to fit the prior on population-level preference
data or domain expert input, whenever this is available. In our experiments, we
do this for all competitors.

4.2 Generating Personalized Interventions with W-FARE

PEAR generates personalized interventions by leveraging a novel, user-aware
extension of FARE [7], a state-of-the-art algorithm for generating short – but
user-agnostic – interventions, which we briefly outline next. In FARE, each action
a ∈ A is implemented as a tuple (f, x), where f is a function changing one
feature and x is the value that feature takes, e.g., (change_income, $1000). Given
an initial state s, FARE uses reinforcement learning to learn two probabilistic
policies πf (s) and πx(s), which are used as priors to guide a Monte Carlo
Tree Search procedure that incrementally builds an intervention I by selecting
actions a(i) ∈ A. In order to ensure interventions are actionable, actions a are
only chosen if they satisfy given preconditions. The reward used by FARE is
r(I) = ρ|I| · 1

{
h(I(s(0))) ̸= h(s(0))

}
, where ρ > 0 is a discount factor and the

indicator evaluates to 1 if I attains recourse and to 0 otherwise. FARE is highly
scalable and very effective at identifying counterfactual interventions even under
a minimal training budget [7].

FARE is user-agnostic, while PEAR needs to generate personalized interventions.
We fill this gap by introducing W-FARE, a novel extension of FARE that integrates
the user’s costs into the reward while inheriting all benefits of the latter. Recall
that PEAR maintains a posterior over the weights. The expected cost of an action
can thus be obtained by marginalizing over the posterior:

E[C(a, s) | D(t)] =
∫
w
C(a, s | w)P (w | D(t)) dw (6)

Analogously, the cost of an intervention I is replaced by the expectation:

E[C(I) | D(t)] =
∑|I|

i=0 E[C(a(i), s(i)) | D(t)] (7)
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The W-FARE reward function r(I | w) is then proportional to ρE[C(I|D(t))] ·
1
{
h(I(s(0))) ̸= h(s(0))

}
. This explicitly drives RL to learn policies that opti-

mize user-specific action costs and that, therefore, help MCTS to more quickly
converge to personalized interventions. We show empirically that PEAR is sub-
stantially more effective than FARE at computing personalized interventions in
Section 5.

4.3 Computing Informative Choice Sets

Given the current posterior P (w | D(t)), PEAR computes a choice set containing
k interventions I that maximizes information gain [5]. We measure the latter
using the Expected Utility of Selection (EUS) [46], a measure of the goodness
of a set defined as the expectation, under the uncertainty over w, of the utility
of its most preferred element. EUS is closely related to the Expected Value of
Information (EVOI), and frequently used in Bayesian PE [33,45,1,46]. The EUS
builds on the notion of expected utility of an intervention I, which is defined as:

EU(I | D(t)) = E[−C(I) | D(t)] = −
∫
w
C(I | w)P (w | D(t)) dw (8)

The EUS is of a choice set O can then be defined as:

EUSR(O | D(t)) =
∑

I∈O PR(O ⇝ I)EU(I | D(t))

= −
∫
w

[∑
I∈O PR(O ⇝ I | w)C(I | w)

]
P (w | D(t)) dw (9)

Here, PR(O ⇝ I | w) is the probability that a user with weights w picks I from
O, under a specific choice of response model R modelling noise in user choices.
Intuitively, we expect users tend to prefer interventions I ∈ O that cost less than
that of the other interventions in O and that interventions with similar costs have
a similar probability of being chosen. Motivated by this, and following common
practice in choice modelling [25], in PEAR we implement a logistic response model
(L), defined as:

PL(O ⇝ I | w) =
exp(−λC(I | w))∑

I∈O exp(−λC(I | w))
(10)

Here, λ ∈ R is a temperature parameter. Finding a choice set O maximizing the
EUS is intractable in general – NP-hard [30,23], in fact – and computationally
intensive in practice, and risks slowing down the interaction loop to the point of
estranging users. We observe that, however, under some response models R, the
EUS becomes submodular [23] and monotonic. This is the case for the noiseless
response model (NL), according to which the user always prefers the lowest-cost
option, i.e.,7

PNL(O ⇝ I | w) =
∏

I,I′∈O : I ̸=I′ 1{C(I | w) < C(I ′ | w)} (11)

7 For the sake of presentation, we assume that there are no ties. Note that the EUS
formula is invariant to the way ties are broken. In our implementation, ties are broken
uniformly at random.
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Algorithm 2 Greedy procedure to efficiently compute a choice set O: s(t) ∈ S
the current state, A the available actions, k ≥ 2 is the size of choice sets, D(t)

the user choices so far.
1: procedure SUBMOD-CHOICE(s(t), k,A,D(t))
2: O ← ∅
3: w̄← Ep(w|D(t))[w]
4: while |O| < k do
5: Generate the candidate interventions I with W-FARE using A and w̄
6: Î ← argmaxÎ EUSNL(O ∪ Î | D(t))− EUSNL(O | D(t))

7: O ← O ∪ {Î}
8: return O

This means that, for NL, greedy optimization is sufficient to find a choice
set O that achieves high EUSNL with approximation guarantees. Formally, it
holds that for choice sets O found via greedy optimization, EUSNL(O | D) ≥
(1 − e−1)EUSNL(O

∗ | D), where O∗ is the truly optimal choice set [45,30,23].
In PEAR, we leverage the fact that EUSL − EUSNL is always smaller than a
problem independent (tight) bound [45], meaning that instead of minimizing
EUSL directly, we can compute a high-quality choice set by greedily maximizing
EUSNL instead. This immediately leads to a practical algorithm for the logistic
response model L, listed in Algorithm 2.

4.4 Benefits and limitations.

PEAR is designed to facilitate the application of AR to practical high-stakes tasks
like loan approval. The main benefit of PEAR is that it provides personalized
algorithmic recourse, which existing approaches are not capable of. Also, it follows
a fully Bayesian setup for handling uncertainty over the estimated preferences
and noise in user feedback. It also leverages ideas from preference elicitation –
such as small choice sets and elicitation of relative preferences – to ensure the
interaction is cognitively affordable.

Several steps of the algorithm – namely, evaluating the EUS (Eq. (9)) and the
expected cost of interventions (Eq. (7)), and updating the posterior p(w | D(t)) –
require marginalizing over the weights. Doing so involves evaluating a complex
integral that cannot be solved analytically. We sidestep this issue by leveraging
an efficient Monte Carlo approximation, and specifically ensemble split sampling
[16,17] and then averaging over the samples with the highest likelihood. We
find that, empirically, this procedure is efficient – so much that it can support
interactive usage – and leads to competitive results in our experiments, cf.
Section 5.

5 Experiments

Our experimental evaluation is aimed at answering the following research ques-
tions:
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Q1 Does PEAR succeed in minimizing regret for increasing amount of user feed-
back?

Q2 Does PEAR outperform competitors in terms of validity and cost?
Q3 Is PEAR robust to imprecise knowledge of the causal graph of the user?

Datasets and Classifiers. We evaluated our approach on two real-world
datasets taken from the relevant literature: GiveMeSomeCredit [15] and Adult
[10]. They are (unbalanced) binary classification problems for income predic-
tion and loan assignment respectively. The datasets have both categorical and
numerical features. Some of these features are actionable (e.g., occupation, ed-
ucation), while others are immutable (e.g., age, sex, native_country). These
datasets come without a causal graph and users’ preferences over the features.
Following previous work [20,7,29], we manually defined fixed SCMs for both. We
randomly generated user-specific weights for each instance by sampling from a
(dataset-specific) mixture of Gaussians with M = 6 components. We then split
the data into training (70%), validation (10%) and test (20%) sets. For each
dataset, we designed the black-box classifier h as an MLP with two hidden layers.
We trained it by cross-entropy minimization, selecting the hyperparameters which
maximise the F1 score on the validation set.

“Easy” vs. “Hard” Users. Intuitively, users close to the decision boundary
of the black-box h will require few actions to achieve recourse, while users to
whom h assigns a low score might need longer and more complex interventions.
Understanding the preferences of these “hard” users is crucial since a wrong
suggestion might increase sensibly the overall cost for them. For each dataset,
we thus built two separate testing sets. The first one, named All, is obtained by
sampling 300 users s with an unfavourable classification (h(s) < 0.5), regardless
of the actual value of h. The second one, named Hard, is obtained by sampling
300 users with an unfavourable classification having a score in the lower quartile
of the black-box score distribution.

Competitors. We compare PEAR against several baselines: FARE and its
explainable version EFARE [7], CSCF [29], an evolutionary algorithm which, sim-
ilarly to FARE, generates recourse options by considering causal cost functions
and action sets A, and FACE [32], a well-know AR algorithm, which optimizes
for population-based "feasible paths" to achieve recourse. We also consider two
simpler baselines, a brute-force search (MCTS) and a vanilla reinforcement learning
agent (RL), trained in a similar way as [14,44]. Note that all the competitors are
model-agnostic and not interactive, since they assume the users’ costs to be fixed.

Experimental Protocol. For PEAR, we vary the number of questions T to
the user from 0 to 10. For T = 0, we initialize the weights with the expected value
of the prior, EP (w)[w], that represents a user-independent population-based prior.
Moreover, we employ two user response models, the noiseless model (Eq. (11)),
to check the effectiveness of our approach in the best-case scenario where the
user can perfectly express their preferences, and the logistic model (Eq. (10)), to
challenge our approach in a more realistic scenario. To provide a fair comparison,
we equip the competitors with the causal cost function and set their weights to
the expected value of the prior.
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Fig. 3: Normalized Average Regret for PEAR when varying the number of questions,
the choice set size and the user response model on both datasets (sampled from
All users).

Q1: PEAR successfully minimizes the regret. Fig. 3 shows the evaluation
of the regret as a function of the number of queries to the user. Here the ground-
truth intervention IGT (which is unknown) is approximated by running PEAR
with the correct user costs wGT , and the regret is normalized by rescaling the
costs between C(IGT | wGT ) and C(I(0) | wGT ) where we generate I(0) using the
expectation of the prior. We run PEAR with two different choice set dimensions,
k = 2 and k = 4, and for both noiseless and logistic response models. After a few
questions, PEAR reaches a low regret in all settings. Generally, a larger choice set
produces a lower regret, irrespective of the response model, with the downside
of increasing the cognitive burden for the user. We now briefly summarize the
results when T = 10. For the Adult dataset, the best regret is ≈ 0.09 for the
noiseless user and k = 4, while the worst regret is ≈ 0.40 for the logistic response
model and k = 2. For GiveMeSomeCredit, we get ≈ 0.15 (noiseless, k = 4) and
≈ 0.45 (logistic, k = 2). Overall, we can provide interventions which are at least
50% cheaper than their preference-agnostic counterparts.

Q2: PEAR outperforms competitors in terms of validity and cost.
Following the AR literature [19,43], we compare PEAR (with T = 10) and all
competitors in terms of average validity, i.e., fraction of users for which we
obtained recourse, intervention cost and length (or sparsity), i.e., the number
of features that have to be changed. Intervention costs are computed by using
the true weights wGT . Table 1 shows the results. PEAR manages to achieve the
highest validity while also providing substantially cheaper interventions than
the non-personalized competitors on average. This is true both for the noiseless
and logistic response models. While CSCF tends to produce shorter interventions,
these are in general more costly and have a larger cost variance with respect
to those found by PEAR, confirming the intuition that length is a suboptimal
proxy of intervention complexity. The only exception is the Hard setting of
GiveMeSomeCredit, where however CSCF manages to achieve recourse for only
14% of the users, whereas PEAR achieves recourse in 58% of the cases. The
difficulty of CSCF in achieving recourse is visible in all settings and severely
limits its applicability. Furthermore, CSCF is 10 to 50 times more computationally
expensive than PEAR, making it unsuitable for real-time interactive scenarios.
The MCTS baseline has rather poor performance both in terms of validity and
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Table 1: Performance of all competitors averaged over 10 runs. A ‘-’ indicates that
the method did not find any successful intervention for any user. PEARNL and
PEARL indicate PEAR associated with the noiseless and logistic response model,
respectively. The best results are boldfaced.

Adult GiveMeSomeCreditUsers Method Validity Cost Length Validity Cost Length
FARE 0.97± 0.16 257.48± 191.58 3.04± 1.06 0.83± 0.27 132.52± 97.26 2.97± 1.08
RL 0.86± 0.31 247.84± 190.58 2.94± 1.06 - - -

EFARE 0.85± 0.33 267.08± 192.45 3.10± 1.14 0.67± 0.37 123.18± 96.57 2.84± 1.06
CSCF 0.80± 0.30 171.69± 140.69 2.64± 0.66 0.60± 0.40 101.31± 113.46 2.52± 1.10
MCTS 0.44± 0.44 439.78± 202.44 4.55± 1.26 0.72± 0.41 220.98± 105.71 4.18± 1.24
FACE 0.14± 0.19 410.79± 96.77 4.00± 0.59 0.23± 0.36 328.68± 46.15 6.09± 0.52

PEARNL (ours) 1.00± 0.03 135.22± 49.87 2.90± 0.52 0.89± 0.00 92.81± 26.27 2.85± 0.35

All

PEARL (ours) 1.00± 0.03 140.18± 52.35 2.88± 0.49 0.89± 0.02 98.03± 29.23 2.94± 0.45

FARE 0.92± 0.28 445.17± 210.11 4.33± 1.31 0.35± 0.42 297.03± 91.19 4.82± 0.70
RL 0.71± 0.44 421.39± 209.66 4.11± 1.34 - - -

EFARE 0.69± 0.45 438.38± 213.34 4.24± 1.35 0.13± 0.33 305.16± 75.11 4.75± 0.57
CSCF 0.32± 0.43 386.73± 132.16 3.87± 0.60 0.14± 0.33 189.26± 113.89 3.33± 1.08
MCTS 0.21± 0.40 573.09± 140.24 5.56± 0.70 0.40± 0.44 346.73± 97.86 5.43± 0.87
FACE 0.00± 0.04 448.72± 0.00 5.20± 0.00 0.20± 0.34 441.98± 41.74 7.09± 0.46

PEARNL (ours) 0.99± 0.09 299.03± 43.62 3.41± 0.50 0.58± 0.04 242.43± 45.53 4.59± 0.38

Hard

PEARL (ours) 0.98± 0.09 305.24± 54.99 3.40± 0.54 0.58± 0.03 256.81± 46.07 4.64± 0.36

cost in all settings, while the RL baseline has a reasonably high validity on Adult
but it completely fails to learn a policy achieving recourse on GiveMeSomeCredit.
On the other hand, methods which combine MCTS and RL (FARE and EFARE)
give better performance, which is aligned with previous results [7], but are still
suboptimal with respect to PEAR in terms of both validity and cost. Finally, FACE
struggles to achieve recourse since it needs to find a "feasible path" from the
current user to a similar one in the training set, which is favourably classified.

Q3: PEAR is robust to misspecifications of the causal graph. In the
previous experiments, following other research works [20,7,29], we assumed to
know the structure of the SCM a-priori. However, in a real scenario, we might
have instead an approximate causal graph. Table 2 shows the validity, cost and
length of the interventions found by removing X% of edges from the causal graph,
with X ∈ {0.15, 0.25, 0.50, 1.00}. Validity is almost unaffected by corruption in
all settings since it only impacts the computation of the cost. On the other hand,
as expected, increasing the amount of graph corruption reduces the effectiveness
of user feedback. However, the degradation is not dramatic. Indeed, if we look
at the Hard evaluation, the increase in cost is negligible (around 2%) with up
to 25% randomly removed edges. When considering All users, the degradation
is more evident, but still within 10% for GiveMeSomeCredit, while for Adult it
goes up to 60%. The setting X = 1.0 is equivalent to a non-causal cost function,
in which acting on a feature has always the same cost, irrespective of the others.
It is the common choice of many works dealing with AR [48,34,32]. Under such a
setting, even with elicitation, the interventions are up to 70% more expensive
than if we were to consider interactions between features. Overall, results clearly
indicate that PEAR can suggest reasonable cost interventions even with a largely
misspecified causal graph. This is apparent when comparing these results with
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Table 2: Evaluation of PEAR (with q = 10 and a logistic noise model) for increasing
amount of causal graph corruption, averaged over 10 runs. “None" indicates that
the correct causal graph is being used.
Users Corruption Adult GiveMeSomeCredit

Validity Cost Length Validity Cost Length
None 1.00± 0.03 140.18± 52.35 2.88± 0.49 0.89± 0.02 98.03± 29.23 2.94± 0.45
0.15 1.00± 0.04 225.90± 66.95 3.27± 0.41 0.89± 0.00 105.45± 30.89 2.75± 0.54
0.25 1.00± 0.00 226.25± 72.53 3.33± 0.43 0.89± 0.00 107.31± 25.81 2.75± 0.45
0.5 1.00± 0.03 236.05± 66.11 3.28± 0.38 0.89± 0.00 114.45± 38.69 2.81± 0.53

All

1.0 0.98± 0.03 243.86± 96.10 3.69± 0.62 0.89± 0.00 130.78± 51.86 3.01± 0.63

None 0.98± 0.09 305.24± 54.99 3.40± 0.54 0.58± 0.03 256.81± 46.07 4.64± 0.36
0.15 0.99± 0.00 307.71± 46.34 3.04± 0.61 0.58± 0.00 262.26± 48.36 4.65± 0.36
0.25 0.99± 0.00 312.40± 47.78 3.02± 0.57 0.59± 0.09 254.10± 60.96 4.55± 0.45
0.5 0.99± 0.00 310.71± 48.30 3.19± 0.65 0.58± 0.06 276.56± 38.22 4.68± 0.39

Hard

1.0 0.99± 0.03 363.70± 61.18 3.23± 0.74 0.58± 0.00 282.36± 26.96 4.64± 0.31

those in Table 1. Even with 50% randomly removed edges, PEAR recommends
interventions that are cheaper than all competitors but CSCF, that however has a
substantially lower validity.

6 Conclusion

In this work, we identify the problem of personalized algorithmic recourse as a fun-
damental stepping stone for ensuring recourse is usable in real-world applications,
and develop PEAR, the first algorithm able to provide personalized interventions.
Our experimental evaluation shows that PEAR substantially outperforms existing
(non-personalized) solutions in terms of both validity and intervention cost with
only a handful of queries to the user. We hope that this initial contribution can
foster further research in the community to work towards a more realistic form
of algorithmic recourse that can be successfully deployed in real-world scenarios.
As for all methods dealing with algorithmic recourse, the effectiveness of the
approach should, in principle, be evaluated on real users. However, this evaluation
is highly non-trivial (and thus still missing in the algorithmic recourse literature)
because it requires the creation of a realistic scenario where a user feels to be
unfairly treated in some machine-driven decision involving her life. The legal
requirements that are progressively being introduced to regulate AI systems [47]
could contribute to making the information needed to set up such a scenario
available in the near future.

Broader Impact. In principle, we develop these methods to increase the
fairness of the current machine learning systems. However, we need to consider
the potential bad ethical ramifications of these technologies. Eliciting users’
preferences might entail asking sensitive questions, or malicious entities could
exploit these procedures to "hack" and twist the intervention generation. These
considerations can be mitigated by research on adversarial attacks to ensure the
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method’s robustness. Moreover, legal advice might be needed to manage personal
user data.
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