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Abstract. This project draws together work on learning dynamic causal
networks from simulation data with the application of domain knowledge
to improve the model. In previous work we showed how causal networks
capture domain expertise and can improve simulation modelling. We
demonstrate this approach in this paper as it applies to a rudimentary
reinforcement learning (RL) solution. Our thesis is that a person can un-
derstand the RL solution by means of the model causal structure derived
from historical data. This is work-in-progress toward the larger goal of
using the combination of domain knowledge applied to causal models to
develop improved dynamic treatment policies.
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1 The combination of causal modelling and domain
knowledge

This project draws together work on learning dynamic causal networks from
simulation data [3] with the application of domain knowledge to improve the
model. In our previous work, [5], we showed how causal networks capture do-
main expertise and can improve simulation modelling. For instance, it was shown
that “confounding by indication” [9] between treatment and severity variables
could be resolved by unrolling the causal model into multiple cycles, as shown
in Figure 1. In this article we use this unrolled causal model to understand how
human intervention may depend on interpretation of dynamic model policies.
This is work-in-progress toward the larger goal of using the combination of do-
main knowledge applied to causal models to develop tools for improved dynamic
treatment. Central to our approach is that explanation and causality are two
sides of a coin [2].

To test this idea, we posit a given causal model, expressed as a network
for which we’d like to discover the optimal dynamic policy. We explore several
approaches that take advantage of the interplay between machine learning from
data generated by the model with interpretations of the domain that can be
read from the causal structure. We demonstrate this approach in this paper as
it applies to a rudimentary reinforcement learning (RL) solution. Our thesis is
that a person can best understand the RL solution by means of the
model causal structure derived from historical data.
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In actuality, for modelling purposes, one would only have access to data,
either on-line or off-line, but not to the underlying causal model. To simulate
the real world case, we use the causal model to create a data set from which we
use novel tools to learn the causal structure. Because we know the true causal
model we have a gold standard by which to evaluate our results.

1.1 The Domain: Simulating Clinical Episodes

We start with a model of treatment of a fictitious virus. In a hospital ICU, we
posit a severe infection that requires carefully balancing the dose of a drug that
is administered over the course of the infection. Either the patient survives or
dies depending on the level of the drug that may vary during the episode. In this
work, we explore the effectiveness, expressed as the average survival rate, when
the drug dose varies over time with the patient’s condition. Our intuition, to be
substantiated, is that the optimal dosage should start high and decrease during
the episode.

1.2 The dynamic causal network

The domain is modelled by a “Dynamic Bayes Network” [1] (DBN) show in Fig-
ure 1. Model variables are shown as nodes and dependencies by arcs to form an
a-cyclic directed graph. In standard fashion, conditional probability distributions
are shown by ovals, policy functions by squares, and value functions by polygons
(e.g., diamonds or hexagons). Conditioning and functional arguments are shown
by incident arcs; in the case of policies, these arcs indicate the observations on
which the policy depends. Multi-stage models are represented by showing the
two stage "unrolling" of the model. In our case the model consists of a finite,
random number of stages determined by the number of stages until the final
outcome happens.

The DBN is derived from the structure of a causal network learned from
data whose causal structure would then be revised by expert judgment. Current
network learning methods are insufficient to recover an accurate model, as is
apparent by comparing Figure 1 with Figure 2. For this experiment we assume

Fig. 1: Original dynamic causal model Fig. 2: Causal model learned by RHINO
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expert judgment would lead to a revised model close to Figure 1. However, as will
be seen, the apparent learned model gives insight into the discovered policies.

The modified causal network becomes one stage in the DBN to which a
factored model-based RL solution can be applied. Thus by exploiting causal
structure we avoid the data inefficiency that plagues RL [4].

Since we are interested in the effects of interventions, a causal understanding
of the domain is necessary. We presume all dependencies shown by arcs in the
true model are causal. The random variables with time transitions; infection,
cumulative drug, and severity are understood to cause their subsequent states.
Infection tracks the course of the infection. Severity is a consequence of two
additional antecedents, infection and efficacy. The outcome is computed from
severity and infection, which is strictly not seen as a causal relation, but just an
accounting of the current reward. If the infection out-paces the disease severity,
the patient survives. Cumulative drug is the (noisy) summation of the current
dose regime, and influences efficacy. The arc from severity to drug—the policy
node—determines observability; what state variables the policy “sees.”

The structure of the unrolled DBN explains why a dynamic policy avoids con-
founding by indication, or more exactly confounding by severity. As in the typical
confounding diagram, severity conditions both drug (e.g. the intervention) and
the outcome, creating a “back-door”[8] to the direct effect of the intervention on
outcome. Once temporal sequence is expressed in the DBN, severity’s effect is
moderated by spreading it over multiple periods. Several interventions isolate its
confounding effect from the final outcome: The severity that the interventions
see is not the one effecting the current outcome.1

1.3 Previous results: Constant dose levels

In our previous work, we showed how knowledge of the causal graph could be
used to correct learned causal models, especially in extents of the domain where
data was sparse. We showed this for simulations made by discrete-valued Bayes’
networks, continuous valued “no-tears” style causal models, and by offline RL.
These were each simulations derived by learning from simulated data (for which
we knew the ground truth)—“simulations of simulations.” We did this solely with
constant policies; that is, policies that did not depend on time or state. By virtue
of domain knowledge as expressed in the causal network, we could understand
how to improve the models built from the simulation. In this work we extend
this analysis to report results on the first phase of dynamic model investigation.

Our previous results are duplicated here in Figure 3. Survival (orange) rates
increase with dose levels until efficacy (green) starts to decrease due to desensi-
tization from the cumulative level of the drug.

1.4 Learning a dynamic causal model from data

The purpose of causal discovery is to infer the underlying causal structure from
observational data. We used RHINO [3] to infer the instantaneous and one-day
1 Demonstrating lack of confounding computationally is future work.
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Testing dose levels over episodes,
survival (shown as average re-
ward per episode) reaches a max-
imum at a dose level of 0.7. Effi-
cacy rises similarly with Reward,
then declines, as dose accumu-
lates over time, its efficacy de-
clines, as the influence by cumu-
lative dose on efficacy implies.

Fig. 3: Survival, expressed as Reward, compared to Efficacy.

lagged probabilistic structure among variables assuming a Gaussian noise compo-
nent. RHINO is an end-to-end causal inference framework that learns variables’
non-linear, temporal causal relationships from time-series data. It combines vec-
tor auto-regression and deep learning to model the effect of an intervention
samples within a single stage, as well as causes from previous timesteps—i.e.,
lagged effects.

The true model network compared to the inferred network are shown in
Figure 1 and Figure 2. As impressive as the ability of the learning algorithm is,
the diagram illustrates that it needs to be improved by domain knowledge.

2 Policy dynamics

Short of solving for the full dynamic dosing policy we can gain substantial insight
into the dosing trade-off by approximating a policy that varies linearly with
time. To this end we ran a sequence of experiments with policies parameterized
by constant and slope parameters, as functions of different observable variables.
Since observables vary with time, and these policies vary linearly with one of
the observables, they become dynamic policies. For each observable variable we
searched over the range of constant and slope values to maximize average survival
per episode, given the stochastic nature of the domain. The magnitude of the
optimal value of the slope indicates the time-varying nature of the resulting
policy. A negative sign to the slope indicates that the dosage rate declines as the
observable increases. The results are shown in Figure 4.

We experimented with policy functions that depend on different observables;
day into the infection episode, current severity, previous cumulative drug, and
previous efficacy. In contrast the severity-based policy stands out by
its lack of any dynamic effect. This can be explained by the structure of
the causal network. The learned causal model, Figure 2, although not truthful
to the true causal structure, demonstrates the primacy of the cumulative drug
variable’s influence on the rest—despite its inaccuracies, the learned model is
an accurate representation of the variables’ joint probability distribution. One
can see from the model that cumulative drug, together with efficacy is sufficient
to determine severity, so the temporal dynamics of severity are indirect; it only
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mediates the effect of cumulative drug. As the network shows, severity is an
indirect indication of the state, and inadequate for a dynamic policy.

run
label

policy
observable

survival
rate

∆ per
stage

170-14-50 day 0.963 -0.015
170-19-03 severity 0.626 0.0029
171-22-59 cum drug 0.957 -0.156
171-00-39 efficacy 0.968 -0.0142

To decrease cumulative drug we force drug to
decrease with time. This results in an optimal
declining dose policy, shown here. We would see
a similar effect with infection. As for efficacy, it
first increases then decreases as shown in Fig-
ure 3, so the optimal dose as function of efficacy
follows a non-monotonic trend.

Fig. 4: Change in the slope of the optimal linear drug dosing policy as a function
of different policy observables.

To test the information value of a severity based policy, we applied a standard
Q-learning algorithm, Q(s, a) ← Q(s, a) + α(r +maxa′Q(s′, a′) − Q(s, a)): See
[6]. We run the Q-learner directly against the simulator that implements the
true causal model, using severity as the state s, to generate s′ as a function of
(s, a). Our policy and state variables are discretized in 12 levels. As a test of
calibration, we showed that with no observation, i.e. with a constant policy, the
Q-learner duplicated the optimum dose shown in Figure 3. Thus when severity
is used as the observed state, the derived policy shows no clear dependency on
the observed state as opposed when cumulative drug is used. Since the learned
causal model in Figure 2 infers a direct dependence of the policy on cumulative
drug, ironically this is what one would expect, despite its inaccuracy in recovering
the true structure.

Given the brittleness of RL methods, and challenges with convergence one
could call this into question. Surely though this negative result is supported by
the linear policy experiments, and can be explained based on the causal model
structure.

3 Work in Progress: The next steps

Obviously the next step is to complete the RL solutions to determine the in-
formativeness of the set of state variables, to validate these findings. One could
argue that recent RL deep learning tools [7] would provide better accuracy, but
at the cost of transparency. Our longer term goal is to integrate causal claims
into RL methods. The current work in offline RL—where only historical data is
available—is a promising target where causal reasoning may be applied. As this
work implies, the combination of interactive (e.g. human) input with offline-RL
has particular promise. [10]
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