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Abstract. Results of automated detection of complex patterns in tem-
poral data, such as trajectories of moving objects, may be not good
enough due to the use of strict pattern specifications derived from impre-
cise domain concepts. To address this challenge, we propose a novel visual
analytics approach that combines expert knowledge and automated pat-
tern detection results to construct features that effectively distinguish
patterns of interest from other types of behaviour. These features are
then used to create interactive visualisations enabling a human analyst
to generate labelled examples for building a feature-based pattern classi-
fier. We evaluate our approach through a case study focused on detecting
trawling activities in fishing vessel trajectories, demonstrating significant
improvements in pattern recognition by leveraging domain knowledge
and incorporating human reasoning and feedback. Our contribution is a
novel framework that integrates human expertise and analytical reason-
ing with ML or AI techniques, advancing the field of data analytics.

Keywords: Movement data analysis · Trajectory data · Pattern detec-
tion · Feature-based pattern classification · Interactive visual analytics ·
Human-computer analysis workflow.

1 Introduction

One of common tasks in analysing time-referenced data, such as multivariate
time series and trajectories of moving objects, is to find time intervals where
the manner, or pattern, of data variation is indicative of particular kinds of
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dynamic behaviour. Automatic detection of such patterns by means of computer
algorithms requires precise specification of what values may occur and how the
data are expected to vary. In many application domains, however, patterns of
interest have no exact definitions. What can be elicited from domain experts is
often far from being distinct and precise, for example, “A flock is a large enough
group of objects moving close to each other for a certain time”. Translation of
such description to a form suitable for automated search involves introducing
parameters and thresholds; see, for example, the formal definition of the flock
pattern [8]: “Let m, k ∈ N , and let r > 0 be a constant. Consider a set of
trajectories, where each trajectory consists of T line segments. A flock in a time
interval I = [ti, tj ], where j − i+ 1 ≥ k, consists of at least m entities such that
for every point in time within I there is a disk of radius r that contains all the
m entities”.

Formalisation of vague definitions elicited from domain experts entails two
problems. First, the choice of appropriate parameter settings may not be obvi-
ous, while different choices may lead to very diverse results. Second, after the
parameters are set, the definitions become rigid and intolerant to even minor
data noise and small deviations from the thresholds. Imagine, for example, that
just for a single time moment one of the m entities moving in a flock steps out
from the disk of radius r. This breaks the time interval I in which the conditions
of the formal definition of a flock hold. If the lengths of the sub-intervals are less
than k, the flock will not be detected.

We encountered the problem of definition rigidity in exploring the work of a
knowledge-based system designed to detect complex activity patterns in vessel
movement [17]. The system applies Event Calculus [5] to a set of formal defini-
tions, many of which involve constant thresholds such as speed bounds, minimal
change in movement direction, frequency of changes, and minimal duration of an
activity. Upon observing that the system fails to recognise a significant number
of visually identifiable pattern instances, we employed interactive visualisation
to investigate the data used for the inference. We found that the minimal ac-
tivity duration was often not formally reached due to occasional breaks in the
fulfillment of the rule conditions, which, in turn, happened because of data noise
and small variations of attribute values around the thresholds.

Hence, formalisation of human-defined concepts may not be a good approach
in tasks requiring the tolerance and flexibility of human reasoning. Probabilistic
methods of pattern recognition (e.g., [16]) can be less sensitive to data noise, but
they still assume that pattern specifications obtained from experts are complete
and precise, which is not always the case.

Opposite to specification-driven approaches, machine learning methods strive
to acquire the ability of pattern recognition by generalizing from labelled data
examples. Due to the generalization, the resulting classification models can be
sufficiently flexible regarding data variability. However, machine learning meth-
ods require large numbers of representative training examples, which may be
very problematic. While domain experts can usually easily identify a pattern (or
pattern absence) given an appropriately represented piece of data, their time is
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too costly to be spent for considering and labelling a large number of individually
shown examples.

The inherent problems of the knowledge- and data-driven approaches call for
hybrid solutions that would be able to effectively leverage expert knowledge while
accommodating the flexibility of human reasoning [2, 3], abstractive perception
and capability to give meaning to visual patterns [4].
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Fig. 1. A schematic representation of the workflow of the hybrid human-machine pat-
tern classification.

To address this challenge, we propose a novel visual analytics approach (see
Fig. 1), in which domain knowledge is used for constructing features capable of
effectively distinguishing patterns of interest from other types of behaviour. It
is essential to note that these features need to characterise the behaviour of rel-
evant variables on time intervals, whereas raw data consist of elementary values
referring to individual time steps. Hence, feature construction requires knowl-
edge of (a) what aspects of the behaviour are important, e.g., the range of the
values or the development trend, and (b) what kinds of computationally deriv-
able aggregate characteristics can represent these aspects. The derived variables
are utilised to generate interactive visualisations enabling experts to select, view,
and label groups of similar data items. These labeled examples of different pat-
tern types are then supplied to a machine learning method for developing an
automated classifier. By actively involving a human analyst in the process, our
approach achieves flexibility in utilising domain knowledge and accommodating
data variations. The interactive visual interface enables simultaneous consider-
ation and labelling of multiple data items, which saves the precious time of the
human while allowing creation of a sufficiently large set of data examples for
model training. We evaluated the effectiveness of our approach through a case
study focused on detecting trawling activities in fishing vessel trajectories. How-
ever, our approach is sufficiently general to be applicable to other domains facing
similar challenges.
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2 Approach introduced through a case study

We shall briefly demonstrate the process of human-guided development of a
pattern recognition model using the case study on detection of trawling activity
patterns in trajectories of 71 fishing vessels that operated in the waters northwest
of France, from October 1, 2015, to March 31, 2016. This is a subset of an openly
accessible dataset [18, 1, 6]). The process is illustrated in Fig. 2.

In our case study, the successfully recognised pattern instances from the out-
put of the knowledge-based computer system can be used as supporting material
to create an extended set of representative labelled examples that encapsulate
the patterns of interest. However, the proposed approach does not depend on
the availability of such supporting material. In another application (namely,
recognition of football teams’ playing styles), we had no examples of successful
recognition. The key requirement is the availability of domain knowledge that
includes descriptions of patterns of interest as well as criteria for distinguishing
these patterns from the remaining data. In the maritime activities case study,
the knowledge has been encapsulated in formal rules created earlier in com-
munication with domain experts, while for the football application we gained
the necessary information from special literature. The criteria differentiating the
patterns are translated into computationally derivable features of data segments,
so that the presence of a pattern can be indicated by a particular combination
of feature values. If an initial set of successfully recognised pattern examples is
available, it can be used to test how consistently and distinctly they are charac-
terised by the feature values and adjust the feature set when necessary. The step
of feature testing and adjustment may be repeated after obtaining some version
of a classifier if it performs insufficiently well (see Fig. 1).

Time-variant data, such as trajectories or time series of attribute values, need
to be partitioned into segments by dividing the time into intervals of suitable
duration according to the expected duration of the behaviours or activities to be
identified. This is done using a sliding time window, so that the data segments
partially overlap ensuring that patterns of interest are not overlooked due to be-
ing fragmented into disjoint parts. The characteristic features [14] are computed
for the resulting data segments.

In our case study, we divide the trajectories of the fishing vessels into seg-
ments, called episodes, of length 3 hours using a sliding window shifted by 1 hour.
From time series of movement attributes, we construct features to distinguish
trawling from other movements based on low speed and repeated changes of
movement direction. For the characterisation of speed magnitudes, we compute
the minimum, maximum, and quartiles of the speed values within each episode.
To capture changes in movement direction, we calculate the following features:
the amplitude of direction deviation from the start-end vector, the angle of the
trend line in the progression of the distances from the start, the amplitude of
value deviations from the trend line, and the Pearson correlation coefficient be-
tween the distance values and corresponding time moments. In total, we derive
9 numeric features. The available results of automated pattern detection are
used to assess feature effectiveness. For this purpose, we utilise frequency his-
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tograms to compare the distributions of feature values for episodes containing
at least 50% trawling-classified points with the overall distributions. We observe
that the feature distributions indeed exhibit distinguishing patterns for trawling
activities.

As the approach strongly relies on cognitive capabilities of a human analyst,
interactive visualisations play a crucial role. They enable the analyst to assess
the distinctiveness of features, select representative examples of pattern classes,
and evaluate results of example-based pattern recognition. Depending on the
evaluation, the analyst may need to revisit previous steps, such as providing
additional examples or modifying the set of features.

We utilise dimensionality reduction to create a 2D spatial embedding. In
Fig. 2D, it can be seen that the purple-coloured points representing episodes with
automatically detected trawling are concentrated within a relatively compact
area in the centre of the projection plot. This observation additionally suggests
that the extracted features effectively capture the essence of trawling activities
and can provide a distinct separation from other types of movements.

In the next step, an expert can use an interactive projection plot to select
groups of points that have close positions in the projection space and see a visual
representation of the corresponding episodes (Fig. 2E and B). This allows the
expert to specify examples of different types of movement patterns. In our case,
there are two patterns (looping and sweeping movements) that may indicate
trawling activities (Fig. 2H). As all embedding methods introduce distortions,
we use simultaneously two embeddings with different properties: MDS [13] that
attempts to faithfully represent all distances, and t-SNE [15] that aims at pre-
serving local neighborhoods at the cost of long-range distances.

To classify remaining episodes, we apply, as a proof of concept, the kNN
algorithm [10, 9]. The labelled data can also be used for creating different kinds
of ML models or for refining the set of rules [12]. As the results of the first ap-
plication of kNN are not satisfactory, we extend the set of examples (Fig. 2F).
After evaluating the new results, we decide to improve the performance further
by extending the set of features. The maps in Fig. 2H-J demonstrate iterative re-
finement of the classification results. In this process, we managed to decrease the
number of false negatives from 202 to 166 and the number of false positives from
422 to 121. The number of correctly recognised trawling patterns increased from
1640 to 1676, which is a large improvement compared to the 530 automatically
detected trawling episodes.

3 Discussion and conclusion

The case study has demonstrated that involvement of human intelligence can
significantly enhance the detection of complex behavioural patterns reflected in
data. Our approach is not specifically designed for movement data. In fact, we
applied it to time series of values of multiple numeric attributes [7] rather than
to spatial positions or geometric shapes. The key step is data abstraction [11]
by defining relevant features characterising the behaviour of the attributes on



6 N. Andrienko et al.

A B C

D E F G

H I J

Fig. 2. Visualisations used throughout the workflow. A-C: Maps show episodes with
automatically recognised trawling patterns (A, in purple), initial subset of pattern
class examples (B), and extended subset of examples (C). D-F: 2D space embedding
of the set of episodes based on initially chosen features is used for assessing the feature
suitability (D), creation of an initial set of examples (E), and extending the set of
examples (F). G: 2D space embedding based on an extended combination of features.
H-J: Episodes recognised as containing trawling patterns based on similarities to the
initial (H) and extended (I, J) sets of examples based on the initially chosen features
(H, I) and the extended combination of features (J).
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time intervals [14]. Effective feature engineering requires not only domain knowl-
edge of pattern specifics (which may be incorporated in formal rules, as in our
case study) but also good understanding of possible data transformations and
capability to utilise different statistical metrics to characterise data properties
and behaviours. In addition, it requires cognitive capabilities of a human to see
and understand what data can tell and to derive meaningful concepts, such as
pattern types, which can then be communicated to the machine and used in
computational data analysis.

Our approach contributes to the field of data analytics by demonstrating
a possible way to integrate human expertise and analytical reasoning with ma-
chine learning and artificial intelligence techniques. The key role in the approach
belongs to interactive visualisations enabling human analysts to apply their cog-
nitive capabilities.
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