

Improving Decision Making with Machine Learning, Provably

Manuel Gomez Rodriguez

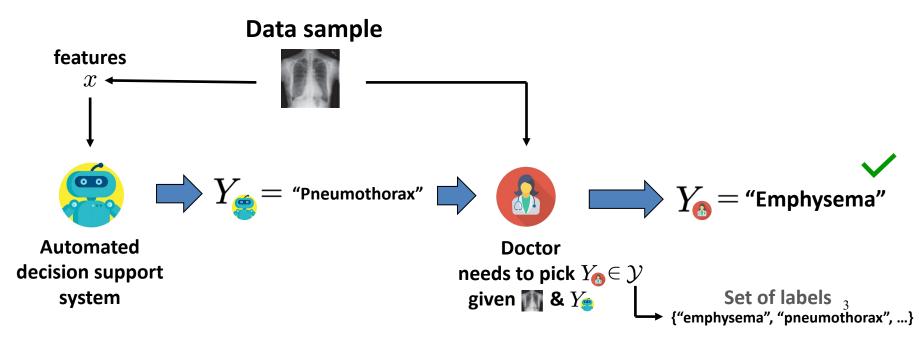
Includes joint work with Eleni Straitouri, Luke Wang & Nastaran Okati

Machine learning to improve decision making

Machine learning promises a new generation of automated decision support systems in many high-stakes domains:

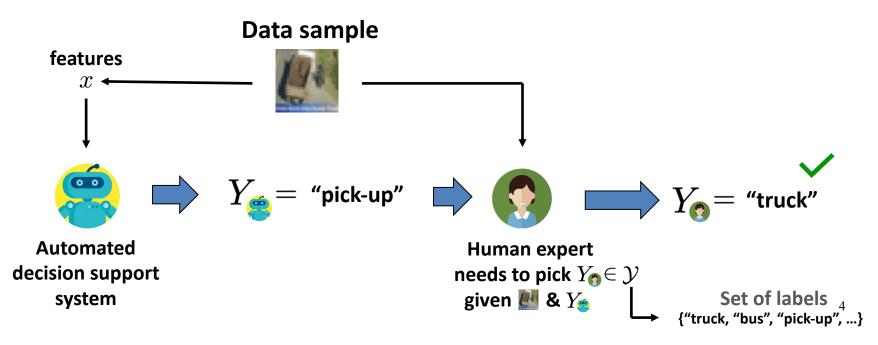
Decision support systems for classification tasks

Machine learning has mainly focused on decision support systems for classification tasks

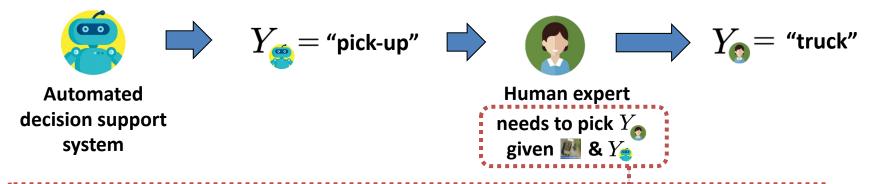


Decision support systems for classification tasks

Machine learning has mainly focused on decision support systems for classification tasks

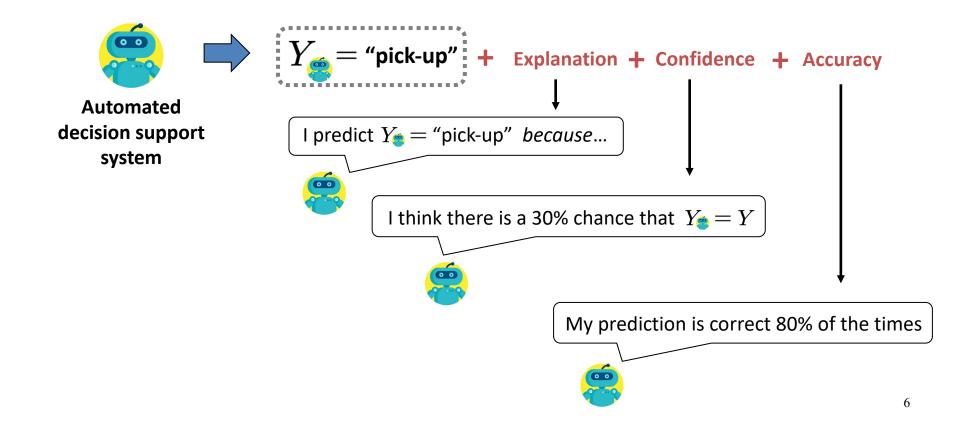


Human experts need to understand when to trust the classifier



- Human needs to **understand when to trust** a prediction $Y_{\mbox{\scriptsize \ensuremath{\mathfrak{g}}}}$ made by the decision support system
 - This follows from the fact that, in general, the accuracy of the system differs across data samples
 - Otherwise, they may be better off on their own

How do decision support systems *modulate* trust?

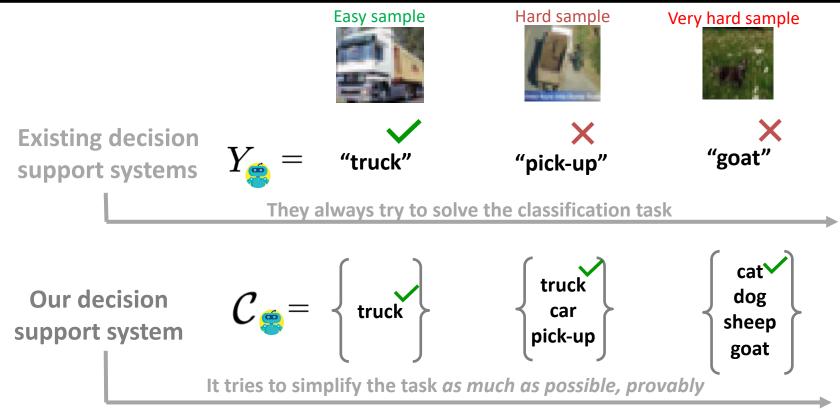


How do decision support systems modulate trust?

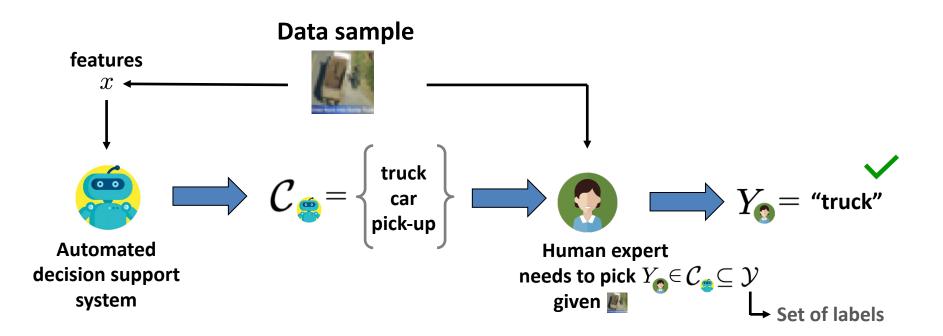
- when to trust a prediction?
 - *Not always*. The empirical findings are mixed and seem to depend on the application domain.

How do decision support systems *modulate* trust?

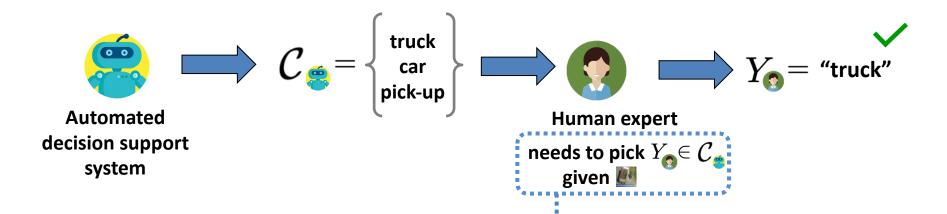
A decision support system that simplifies, rather than solves



A new type of decision support systems for classification



Humans do not need to understand when to trust the system



The human **does not need** to **understand** when to **trust** the system

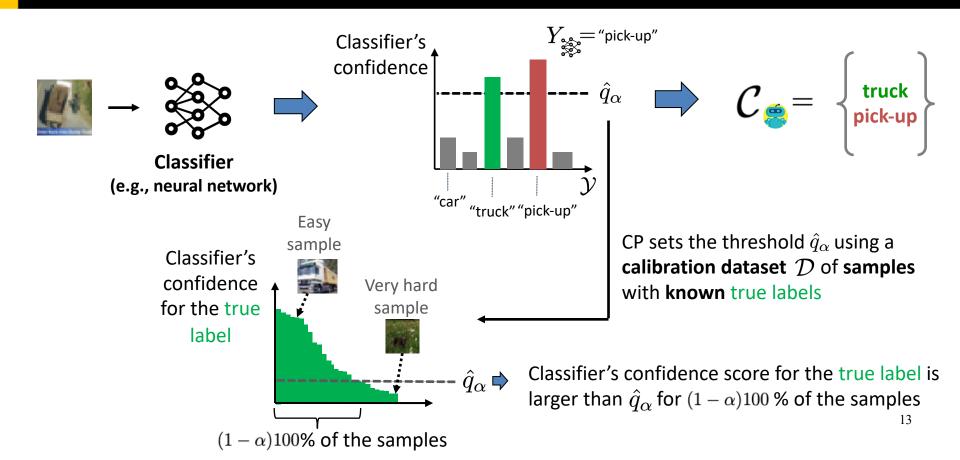
 \rightarrow However, we need to ensure that the subset $\mathcal{C}_{\textcircled{o}}$ contains the **true label** Y with **high probability**

To ensure that the subsets $\mathcal{C}_{\texttt{e}}$ contain the **true label** Y with **high probability**, we rely on **conformal prediction**.

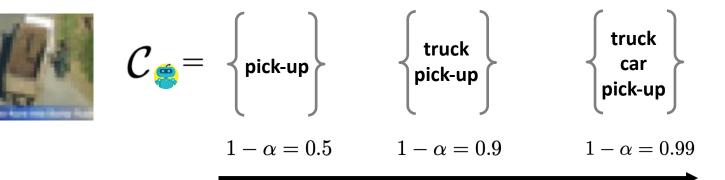
Conformal prediction (CP) is a statistical technique to construct trustworthy subsets C_{\cong}

 $1 - \alpha$ Desired coverage probability $CP \text{ guarantees that } Pr(Y \in C_{\textcircled{o}}) = 1 - \alpha$ $(car'' \quad (truck'' \quad (cat'' \quad (ship'') \leftarrow \cdots)) = 1 - \alpha$ $(car'' \quad (truck'' \quad (cat'' \quad (ship'') \leftarrow \cdots)) = 1 - \alpha$ $1 - \alpha = \frac{3}{4} \quad (car') \quad (truck'' \quad (cat'' \quad (ship') \leftarrow \cdots)) = 1 - \alpha$ $1 - \alpha = \frac{3}{4} \quad (car') \quad (truck'' \quad (cat'' \quad (ship') \leftarrow \cdots)) = 1 - \alpha$ $1 - \alpha = \frac{3}{4} \quad (car') \quad (truck'' \quad (cat'' \quad (ship') \leftarrow \cdots)) = 1 - \alpha$

Conformal predictors in a nutshell

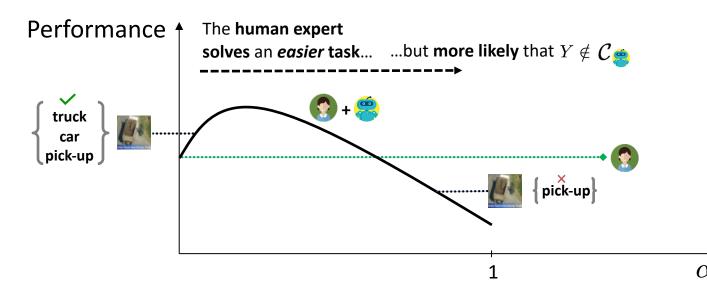


Depending on the desired coverage probability $1-\alpha\;$, the size of the subsets $\mathcal{C}_{\textcircled{s}}$ constructed by a conformal predictor varies

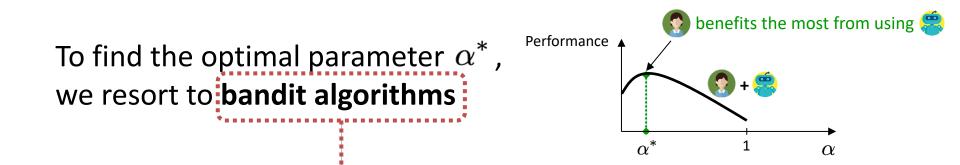


The *larger* the desired coverage probability $1 - \alpha$, the larger the subsets $C_{\underline{m}}$

The parameter α trade-offs how frequently the system will mislead the human expert & the difficulty of the task the human needs to solve



Bandit algorithms to find the optimal conformal predictor

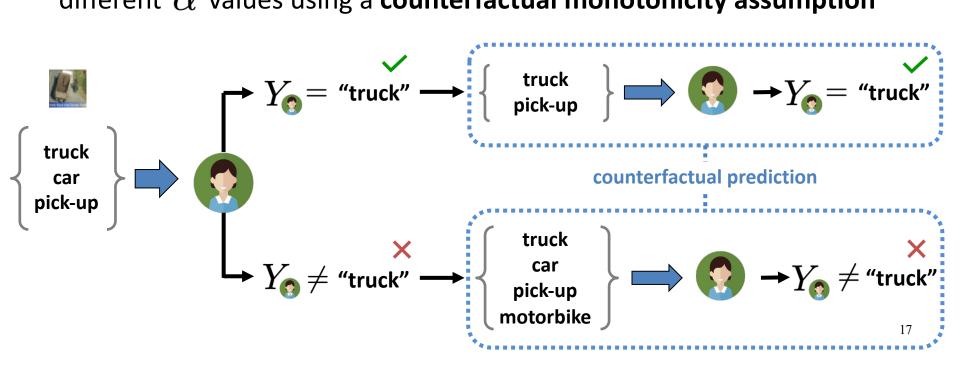


Bandit algorithms sequentially gather predictions by human experts using our system under different α values...

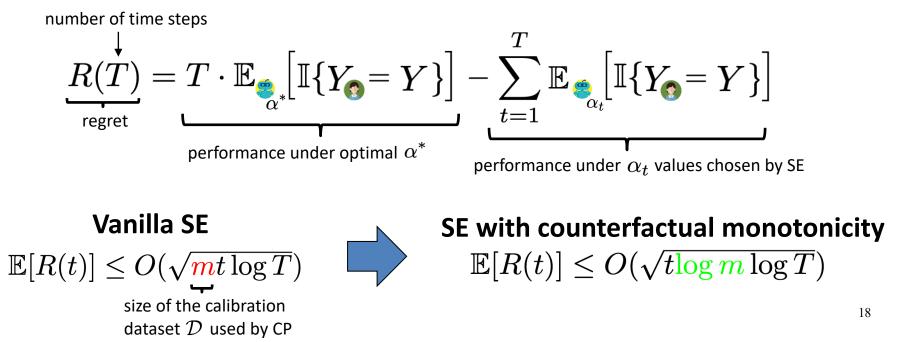
...**prioritizing** α values that seem **more promising over time**.

many bandit algorithms, e.g., successive elimination, UCB1

We **speed-up** how quickly **bandit algorithms** gather predictions for different α values using a **counterfactual monotonicity assumption**

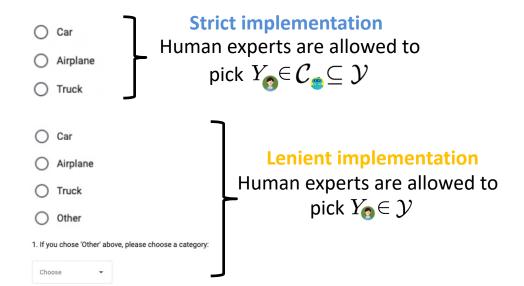


For successive elimination (SE), a well-known bandit algorithm, we show that counterfactual monotonicity allows for an exponential improvement in regret

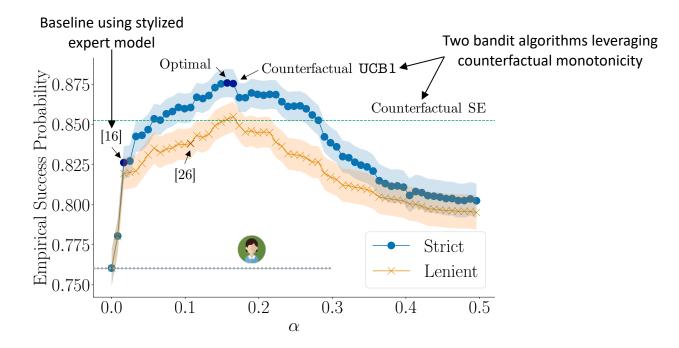


We gather **194,407 predictions** from **2,751 human subjects** over **19,200 different pairs of natural images and subsets.**

Which one of the following categories fits better the image below?

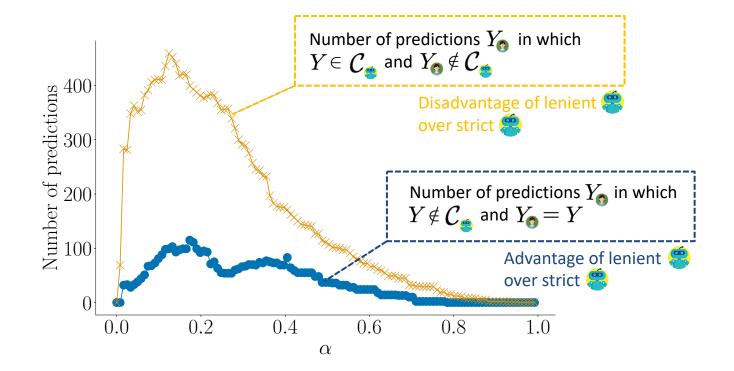


Limiting expert's level of agency offers greater performance



The strict implementation, which adaptively limits experts' agency, beats the lenient implementation, which allows experts to always exercise their agency

Allowing experts to exercise their own agency does not pay off



There are **many decision making processes** where one does not need to solve **classification tasks** but **other types of tasks**.

Huge amount of excitement about the possibility of using **sophisticated LLMs (e.g., ChatGPT)** to improve **decision making.**

→ However, human experts still need to **understand when to trust** the answers provided by LLMs.

Developing **trustworthy decision support systems** using **LLMs** is **highly non trivial.**

Thanks!

Improving Expert Predictions with Conformal Prediction, ICML 2023

https://arxiv.org/abs/2201.12006 https://github.com/Networks-Learning/improve-expert-predictions-conformal-prediction

Designing Decision Support Systems Using Counterfactual Prediction Sets, Arxiv 2023

https://arxiv.org/abs/2306.03928 https://github.com/Networks-Learning/counterfactual-prediction-sets

Eleni

Nastaran

Luke

Learn more about our research at learning.mpi-sws.org