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Abstract. Machine learning models excel at specific tasks and are in-
creasingly being used in critical decision-making processes. However, the
data used to train these models can be biased due to spurious corre-
lations. Spurious correlations are associations between input features
and target labels that exist in the training data but do not hold in the
test distribution. To address this issue, we propose a learning framework
called Active Learning via Source-Target Disagreement (AL-STD), which
actively explores the space of data points to mitigate spurious correlations
caused by subpopulation shifts. Subpopulations can represent different
demographic identities, such as race and gender, or other background at-
tributes. Our proposed active learning (AL) method minimizes the region
of disagreement between two learning hypotheses: the standard empirical
risk hypothesis and a second hypothesis that uses instance reweighting
to adjust for the mismatch between training and test distributions. We
theoretically motivate the idea of shrinking the region of disagreement to
address subpopulation shifts in the AL context. We conduct extensive
experiments on four datasets, including image, tabular, and text data,
demonstrating that our AL approach is more robust than comparable
baselines under various subpopulation shifts.

Keywords: Active Learning · Subgroup Robustness

1 Introduction

Active learning (AL) involves selecting samples from a large unlabelled pool
such that, once labelled, these samples are maximally informative for training a
classifier [37,14]. This task is challenging because, without labels, it is difficult
to determine how informative a sample will be. In pool-based AL [26], a small
initial labelled pool is assumed to be available for training a preliminary classifier,
which can then be used to evaluate the unlabelled samples.

However, this evaluation becomes unreliable if the initial labelled pool is not
representative of the test set or the deployment setting [40]. Specifically, this
paper investigates scenarios where there is a spurious correlation in the initial
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Fig. 1: Illustration of subpopulation shift in the training (source) data distribution
Q (left) and test (target) distribution P (right). Features are generated from four
different two-dimensional Gaussians, each representing a subgroup (y, s) ∈ Y ×S.
Samples from subpopulations a and b share the target label y = 1 (in red) but
differ in group label s; similarly, samples from subpopulations c and d have target
label y = 0 (in blue) and differ in s. The variances indicate the proportions of
subgroups in the dataset, with b and d as the minority subgroups in the training
data. Coupled with a maximum-margin loss function like hinge loss, the empirical
risk minimization (ERM) objective creates a decision boundary that misclassifies
samples from minority subgroups, which becomes critical in the test (target)
distribution.

labelled pool (but not in the test set), leading to confounded classifiers. One
scenario involves the unlabelled pool itself containing these spurious correlations,
which an initial labelled pool inherits if sampled uniformly from the unlabelled
pool. Another scenario is that the initial pool resulted from a biased sampling
process [17,24], and the high cost of obtaining labels (e.g., in medical applica-
tions [10,19]) makes it prohibitively expensive to discard the existing labelled
pool and start anew. For instance, in a person-related dataset with bureaucratic
and legal hurdles to obtaining more labels, an initial labelled pool might almost
exclusively cover a single demographic group, providing a very uneven starting
point for selecting samples to label.

In this example, the specific bias or spurious correlation studied in this paper
is mediated by subgroups, such as demographic groups, present in the data. We
refer to this bias as subpopulation shift [34,39,21], characterized by shifts in
subpopulations resulting in some classes (i.e., prediction targets) being more
likely than others. The shift varies between subpopulations, creating spurious
correlations between the subpopulations and the prediction targets. In the pres-
ence of such spurious correlations, it is crucial to select the right samples for
AL, as a naïve selection algorithm could exacerbate the problem. This paper
develops an AL algorithm for selecting useful samples from an initial labelled
pool experiencing subpopulation shift.

2 Related Work

Active learning. There are two prominent querying strategies in AL [37]: uncertainty-
based and diversity-based approaches. In uncertainty-based strategies, a model is
first trained on the available labelled data, and then samples from the unlabelled



Disagreement-based AL for Robustness Against Subpopulation Shifts 3

pool are selected where the model is most uncertain. One classic method is
from[33], which selects samples where the difference in predicted probabilities
of the top two classes is the largest. Diversity-based approaches, on the other
hand, rely on solving a coreset selection problem. Coresets are subsamples of
a dataset used as proxies for the full set. For example,[36] and[13] constructed
coresets by solving a k-center problem. Hybrid strategies combining uncertainty
and diversity have also been proposed; for instance, [4] selected samples with
gradients spanning diverse directions, where gradient magnitude indicates un-
certainty. Closely related to our work is the disagreement-based strategy, which
queries the label of a sample if it falls within a region of disagreement [14]. This
method maintains a set of possible risk minimizers and queries the label of a
sample x if two hypotheses h1 and h2 in the set yield different predictions for x.
However, disagreement-based strategies typically have high label requirements.
In this paper, we employ a disagreement-based strategy to handle subpopulation
shifts and empirically demonstrate its competitive label complexity compared to
uncertainty, diversity, and hybrid strategies.

Subpopulation shift. Subpopulation shift is a specific instance of the broader
problem of train-test distribution shifts, where the training data distribution
differs significantly from the test data distribution. Such shifts can notably
degrade the performance of machine learning models when deployed in real-world
scenarios [21]. Subpopulation shift specifically refers to changes at the level of
subpopulations within the train and test data distributions, such as those based on
demographics, with some subpopulations being underrepresented in the training
set. The primary objective is to enhance accuracy for the worst-off subpopulation,
often addressed through distributionally-robust optimization methods [34,39].
Unlike these studies, which explore a static setting and assume access to target
label information, our work focuses on an active learning context.

Algorithmic fairness. Subpopulation shift is closely related to algorithmic fairness,
particularly resonating with the concept of Rawlsian Max-Min fairness [32], which
advocates for decisions that maximize the minimum outcome, thereby improving
the worst-off situation. AL in the context of fairness has also been explored.
For instance, [2] proposed a sampling strategy that queries labels to reduce
uncertainty while minimally violating fairness measures like demographic parity.
This approach, however, is computationally intensive as it requires computing
the expected fairness measure over all possible target labels for each sample in
each round, necessitating access to both target and group labels. To address this,
[2] assumed that the unlabelled pool includes group information. In contrast,
[38] developed a meta-learning version of the fair AL setting, avoiding reliance
on manual selection strategies. Our approach, similar to the standard AL setup,
assumes a completely unlabelled pool where samples lack target and group labels.
Related work by [30] actively collected additional features for data points to
equalize performance across different groups. Additionally, [1] proposed an active
sampling strategy that selects labelled samples from the group worst off under
the current model to update the model. Both strategies are tangential to the pool-
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based AL setup described below, aiming to equalize performance and improve
fairness through active learning.

3 Preliminaries

Active learning problem. Let U = {xi}i∈[m] denote the set of initial unlabelled
samples and L0 = {(xi, yi)}i∈[n] denote a set of labelled samples, where xi ∈ X
and yi ∈ Y are the input features and target of the i-th sample respectively. In this
paper, we focus exclusively on classification problems, thus Y = {0, . . . , C − 1}.

In pool-based AL, starting with an initial labelled pool L0 the agent se-
quentially queries an oracle for annotations of some unlabelled samples from U .
Formally, at the t-th iteration the active learner obtains a model fθ(Lt) using
the labelled set Lt, and subsequently queries target labels for k new samples Ht,
selected by the acquisition function q(fθ(Lt),U) = Ht ⊆ U . This results in a new
labelled pool Lt+1 = Lt ∪ Ht for the next iteration. In this work, we focus on
the case in which models fθ(Lt) are obtained using empirical risk minimization
(ERM):

θ̂ = argmin
θ∈Θ

R̂(fθ) , R̂(fθ) =
1

nt

nt∑
i=1

L (fθ(xi), yi) , (1)

where L : Y × Y → R denotes the loss function, and nt is the number of labelled
data points in Lt. For convenience, the notation Lt is omitted from fθ(Lt) when
the context is clear. The process of querying annotations continues until a stopping
criterion is reached, e.g. when the labelling budget is exhausted. The goal of the
active learner is to achieve optimal metrics (e.g. maximum accuracy on the test
set) with minimal label acquisition.

Subpopulation shift setup. In contrast to the standard AL setting, this work
addresses the scenario where the training data (U and L0) is sampled from a
distribution Q that differs from the target (or test) distribution P due to a
subpopulation shift. Specifically, we assume that, in addition to the target label,
the input features x are also associated with a group label s ∈ S = {0, . . . , B − 1},
representing subpopulations. These group labels may correspond to demographic
attributes such as gender or race. Subpopulation shift occurs when the distribution
of subpopulations in the training data differs from that in the evaluation data.
For example, in the training set (or source), there might be an equal number
of positive and negative instances (indicated by color in Figure 1) and an equal
number of instances across groups s ∈ S (left and right, separated by a line in
Figure 1). However, the subpopulations differ: only 5% of positive (red) instances
are in group s = 0 (left side) and only 5% of negative (blue) instances are in
group s=1 (right side), while the test (or target) distribution is even across all
subgroups. This spurious correlation in the training dataset causes the model
to use a shortcut by basing its predictions on the majority subpopulation(s),
leading to the misclassification of minority subpopulations. Generally, there is
an implicit mapping from prediction targets y to groups s, such that if y′ is
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mapped to s′, then PQ(Y = y′, S = s′) ≫ PQ(Y = y′, S = s)∀s ∈ S, s ̸= s′. In
other words, for each prediction target, there is exactly one group where that
target is significantly more common than in the other groups, creating a spurious
correlation.

Importance weighting. Importance weighting is a common technique to address
the discrepancy between the source distribution Q and the target distribution P .
The idea is to reweight the training samples to mimic learning from the target
distribution. Considering P and Q as probability measures on X × Y × S, the
true classifier risk with respect to the target distribution P can be expressed in
terms of source distribution Q as follows:

EP (x,y,s)[L (fθ(x), y)] = EQ(x,y,s)

[
P (x, y, s)

Q(x, y, s)︸ ︷︷ ︸
:=w(x,y,s)

L (fθ(x), y)

]
,

provided that P and Q have the support over Y × S. We can then express the
weighted empirical loss R̂w with weighting w:

R̂w(fθ) =
1

n

n∑
i=1

w(xi, yi, si)L (fθ(xi), yi) (2)

and θ̂w = argmin θ∈Θ R̂w(fθ) the reweighed model. To account for the spurious
correlation in the source distribution Q, we assume equal base rates under the
target distribution P . For instance, in a setting with binary targets and binary
groups, this implies that P(Y = 1|S = 0) = P(Y = 1|S = 1). More generally,
target labels Y and group labels S under P are independent (e.g. [18,7,20]):

w(x, y, s) =
P (x, y, s)

Q(x, y, s)
=

P(Y = y)P(S = s)
(((((((((((
P(X = x|Y = y, S = s)

P(Y = y, S = s)
(((((((((((
P(X = x|Y = y, S = s)

(3)

where we have assumed that marginal distributions within every subpopulation
remain unchanged. According to the overlap assumption where P(Y, S) and
P(Y )P(S) are non-zero for any pair of (y, s) which implies that 0 < w < ∞.
An alternative weighting strategy is to use the inverse frequency of each sub-
population in the labelled pool, defined as w(x, y, s) = 1/Es′∼Q[I(s′ = s)]. This
method optimizes for a target distribution P with uniform group frequencies.
By upweighting the minority groups, this approach aims to balance average and
worst-group errors. However, in practice, upweighting minority groups does not
always result in low training losses across all groups, as some groups may be
inherently easier to fit than others [34]. Importantly, this weighting strategy is
ineffective if Q already has a uniform marginal distribution over groups.

4 Active learning under subpopulation shift

Consider a scenario where the initial labelled set L0 consists of samples uniformly
drawn from U which has experienced a subpopulation shift. As illustrated in
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Figure 1, the presence of a spurious correlation in L0 leads to a biased classifier
that consistently misclassifies the minority group. Consequently, the active learner
employs this biased classifier to assess the informativeness of unlabelled samples,
resulting in sampling bias [9]. Margin-based active learning approaches [33,5] select
samples near the decision boundary, and for support vector machines, labelling
points within the current margin tends to decrease the margin, thus reducing
classification uncertainty. However, biased predictions in this context prompt the
active learner to predominantly sample from the majority subgroup (represented
by points from subpopulations a and c in Figure 1, left), exacerbating the shift
towards the minority subgroup (represented by points from subpopulations b and
d in Figure 1, left).

4.1 Active Learning via Source-Target Disagreement

Under subpopulation shift, the objective of the AL is to develop a fair classifier
that mitigates the adverse impacts of spurious correlations in the labelled pool.
One approach could involve integrating a fairness constraint into the acquisition
function. A frequently used fairness constraint is the equalised odds disparity [15],
defined as

∆(fθ) = max
y∈Y, s,s′∈S

|Ry,s(fθ)−Ry,s′(fθ)| , (4)

where Ry,s(fθ) := E(x,y)|y=y,s=s [L(fθ(x), y)]. It measures the maximum perfor-
mance gap across all group labels S for a given target label y ∈ Y. A high
disparity suggests that the risk associated with predicting a specific class y
differs significantly between groups s and s′. Approaches aiming to alleviate the
disparity often operate under the assumption of fixed training data. This prompts
the inquiry of whether acquiring additional training samples could satisfy such
fairness criteria. Hence, the agent’s goal is to select a new sample x′ in a manner
that minimizes the equalized odds disparity.

x′ = argmin
x∈U

∆
(
fθ(Lt∪{(x,y)})

)
(5)

fθ

fθw

a

c

b

d

Fig. 2: Illustration of disagreement be-
tween fθ and fθw . The two hypotheses
fθ and fθw are optimised using ERM and
re-weighting, as in Equation (2), respec-
tively. The shaded area delineates the
region of disagreement where fθ(x) ̸=
fθw(x).

A intuitive approach to optimizing this
objective is to enhance the represen-
tation of minority subgroups within
L. However, achieving this objective
is computationally challenging with-
out complete knowledge of (y, s) in
the unlabelled pool. Without access to
labels, one can only estimate the ex-
pected objective by training new clas-
sifiers fθ(L∪{(x,y′)}) for every x ∈ U
across all possible y′ ∈ Y [2]. This ap-
proach remains computationally infea-
sible for large U and time-consuming
learning tasks. One might attempt to
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Algorithm 1 Active Learning via Source-Target Disagreement (AL-STD)
Input: Labelled pool L0, Unlabelled pool U , and Batch size k
for t ∈ {1, . . . , T} do

obtain fθ̂ by Equation (1)
obtain fθ̂ŵ by Equation (2) using the estimated weights from Equation (7).
for each x ∈ U do

compute ϕ(x) = ∥fθ̂(x)− fθ̂ŵ (x)∥
end for
label k points with the highest ϕ(x), H ← {(xi, yi, si)}i∈[k]

update Lt+1 ← Lt ∪H , U ← U \ H
end for
Return fθ

relax Equation (4) by using predicted labels (ŷ, ŝ) through inference and unsuper-
vised learning. However, this method may not accurately represent the original
objective because the predictions will be biased, subsequently impacting the
estimates of s.4

In this work, we introduce an alternative approach referred to as AL-STD,
outlined in Algorithm 1. Suppose the labels for target (y) and group (s) are
unavailable for unseen data in U , and an oracle (annotator) furnishes (y, s) upon
querying for the label of x. Let fθ and fθw denote two hypotheses optimized using
ERM and re-weighting (as in Equation (2)), respectively. It is expected that fθ
and fθw would concur on their predictions for the majority subgroups, yet diverge
on minority subgroups (refer to Figure 2). The area of disagreement encompasses
the subgroups correctly classified by fθw but misclassified by fθ. Samples near
the disagreement region are regarded as spuriously correlated, contributing to
the decline in fθ’s performance on the target distribution P . Hence, acquiring
samples within the disagreement region entails giving more weight to minority
subgroups, thereby alleviating the disparity between Q and P .

At each iteration t, AL-STD initially calculates biased predictions ŷ =
{fθ(x) : x ∈ U} and unbiased predictions ŷw = {fθw(x) : x ∈ U}. Subsequently,
it requests labels for the sample x′ that maximizes the predictive dissimilarity
between fθ and fθw :

x′ = argmax
x∈U

ϕ(x) . (6)

In the case of multi-class classification, ŷ and ŷw are softmax outputs and we
define the dissimilarity as ϕ(x) := ∥fθ(x)− fθw(x)∥. Although w in Equation (3)
is unknown in practice, we can estimate it from L:

ŵ(x, y, s) =
P̂ (x, y, s)

Q̂(x, y, s)
=

Ê[I(y′ = y)]× Ê[I(s′ = s)]

Ê[I(y′ = y ∧ s′ = s)]
, (7)

4 In [39], the group label of a data point is estimated via unsupervised clustering
conditioned on the model prediction: P(S = s|ŷ, x).



8 Y. J. Ng et al.

where Ê[·] is the empirical measure over L. The empirical loss with estimated
importance weights can be derived from Equation (2) by replacing w with ŵ.

4.2 Theoretical motivations

The discrepancy between the source distribution Q and the target P originating
from the subpopulation shift, renders the current problem inherently akin to
that of domain adaptation. The following theorem quantifies the effect that the
difference between the source and target distributions has on the success of
domain adaptation learning:

Theorem 1 (Generalisation bounds of domain adaptation [29]). Denote
by g : X → Y the labelling function, for every fθ ∈ H, the following holds:

RP (fθ, g) ≤ RQ(fθ, g) + disc(P,Q) + λ (8)
where: λ = inf

θ∈Θ
{RP (fθ, g) +RQ(fθ, g)} ; RD(f, f ′) = ED [L(f(x), f ′(x))] ,

(9)

disc(P,Q) = sup
θ,θ′∈Θ

|RP (fθ, fθ′)−RQ(fθ, fθ′)| . (10)

Theorem 1 shows that the lower the discrepancy disc(P,Q) the stronger
guarantees one has for the performance of the learnt hypothesis on the target
distribution. In contrast to the static domain adaptation scenario, in AL, we have
the privilege of altering the source distribution by adding new samples to the
labelled pool. One can see the querying process of AL-STD as a way to reduce
the discrepancy disc(P,Q). Using assumption defined in Equation (3) we can
re-write the discrepancy as follows:

disc(Q,P ) = sup
f,f ′

∣∣∣∣∣∑
y,s

(
1− P(Y = y)P(S = s)

P(Y = y, S = s)

)
Ex∼P (x|Y=y,S=s)L(f(x), f

′(x))

∣∣∣∣∣ .
(11)

A way to maximise the right-hand side is to pick f and f ′ such that they
maximally agree on cases where P(Y = y)P(S = s) < P(Y = y, S = s), and
thus the corresponding term has a small positive weight, and maximally disagree
on cases where P(Y = y)P(S = s) ≫ P(Y = y, S = s), as those terms will
be heavily negatively weighted. While fθ and fθw do not necessarily attain the
exact sup, they still provide a good estimate as they are expected to agree on
majority subgroups and disagree on minority subgroups. Therefore, the region of
disagreement of weighted and unweighted hypotheses captures the differences
between the distributions in connection to the hypothesis set used. By selecting
samples with the highest disagreement, one expects to gradually reduce the
discrepancy. We observe evidence supporting this intuition in our experimental
evaluation (see Figure 5b). Thus, the acquisition strategy of AL-STD reduces
the effects of the subpopulation shift over time, leading to improved performance
of the learnt hypothesis on the target distribution.
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5 Experiments

We validate the effectiveness of AL-STD through experiments conducted on
four openly accessible datasets: Coloured MNIST [3] (CMNIST), CelebA [28],
Adult Income [22], and CivilComments [6], which encompass image, tabular, and
text datasets. Detailed information regarding the experimental setups, including
dataset descriptions and configurations, can be found in Appendix A.

5.1 Experimental setup

The AL process iterates until a predetermined labelling budget is depleted.
Each iteration involves training the ERM classifier on the labelled samples and
subsequently employing the active learner to procure new samples. Following the
same procedure as [12], we reinitialise the classifier’s parameters at the start of
each iteration to eliminate the dependency between consecutive acquisitions.

Baselines. Our baselines cover a wide range of AL methods including uncertainty-
based, diversity-based and hybrid ones.

1) Random: Uniformly sample x from U to label; resembles passive learning.

2) Margin [33]: An uncertainty-based AL method that selects samples with
highest uncertainty, defined by the difference of the top two class probabilities
predicted by fθ (lower implies more uncertain), e.i. P(y1|x, fθ)− P(y2|x, fθ)
where y1 and y2 correspond to the first and the second most probable classes
by prediction respectively.

3) BADGE [4]: An AL method that incorporates uncertainty and diversity. It
first computes the gradient embeddings g(x) w.r.t. the penultimate layer for
every x ∈ U . g(x) is computed by the product of Jacobian and the output of
the penultimate layer. Since Jacobians are class-wise, g(x) is a concatenation
of gradient embeddings computed for all possible y ∈ Y . After that, it selects
samples by the k-MEANS++ seeding algorithm.

4) d-Margin: Replaces fθ with the debiased model fw
θ in Margin, using

reweighing from Equation (3).

5) CoreSet [36]: A diversity-based AL method that solely explores informative-
ness in the feature space. It selects k samples by solving a k-centre problem
on the output of the penultimate layer.

6) FAL [2]: A fair AL method that incorporates group information. It assumes
that group labels in U are accessible prior to acquisition. Given a fairness
metric Mfair (e.g. equalised odds), the goal of FAL is to query a sample x ∈ U
that maximally reduces the unfairness: Mfair

(
fθ(L)

)
−Mfair

(
fθ(L∪{(x,y)})

)
.

Subpopulation shift setting. We synthesise subpopulation shifts for datasets with
binary Y and binary S by downsampling the two subgroups. The sampling
probability for the minority subgroup G0 ∈ Y × S and the majority subgroup
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Fig. 3: Evaluation on CelebA. Our proposed algorithm, AL-STD, consistently
surpasses the baselines with higher average accuracy and worst-group accuracy,
alongside lower s-predictivity, within a low to medium budget (10–500 samples
on the number of labels queried). Beyond this range, all methods (excluding Ran-
dom and CoreSet) converge to similar performance levels. Utilizing uncertainty
sampling with a debiased classifier (d-Margin) leads to marginal performance
enhancements, with no improvement observed in CMNIST as depicted in Fig-
ures C.6 and C.7 in Appendix C.

G1 ∈ Y × S will be P(G0) = α ∈
(
0, 1

4

]
and P(G1) = 1

2 − α, respectively.
The parameter α controls the degree to which Y and S are confounded. The
confounding relationship is strengthened as α → 0 while it disentangles when
α → 1

4 . The list of minority subgroups chosen for the experiments can be found
in Appendix A.

Metrics. For every AL step, we retrain fθ with the updated labelled pool
and compute the following metrics: i) average accuracy, the average num-
ber of correct predictions over all subgroups: E(x,y) [I(fθ(x) = y)]; ii) worst–
group accuracy [27,41], the minimum accuracy over subgroup G = Y × S:
ming′∈G E [I(fθ(x) = y) | g′]; iii) s-predictivity, the mean square contingency
coefficient between ŷ and s (also known as Φ-coefficient). This coefficient quan-
tifies the association between the predictions ŷ and the true group label s. We
present the absolute value of this coefficient (hence, 0 ≤ Φ(fθ, s) ≤ 1). A value
close to 1 suggests that the function fθ is predicting the group label s rather
than the target label y, hence a smaller value is more preferable.

5.2 Results

We present the empirical performance of AL-STD alongside other baselines across
image datasets (CMNIST, CelebA), a tabular dataset (Adult Income), and a
text dataset (CivilComments). In the main article, we report the results using
an acquisition size of 10 (k = 10) and α = 0.02, except for CivilComments
and Adult Income. For further evaluations and an extensive ablation analysis
covering different setups, including varying confounding factors α and acquisition
sizes k, refer to Appendix C. We construct initial labelled pools by randomly
selecting samples from the unlabelled pool, with 2000 samples for Coloured
MNIST, 100 for CelebA and Adult Income, and 500 for CivilComments. For
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additional information on datasets, model architectures, and hyperparameters,
refer to Appendix A and Appendix B. All results present the mean and standard
error of 10 trials.

Results for Image modality – CelebA and CMNIST. On CelebA, regarding
average accuracy, AL-STD exhibits significant superiority over all baselines
under subpopulation shift, as evident from Figure 3. Despite being in the same
family, CoreSet and BADGE perform comparatively poorly. One explanation
proposed by [4] is that the representations at the penultimate layer may lack
meaningfulness, leading to CoreSet’s performance potentially worse than random
sampling. Similarly, comparing Margin and d-Margin, the utilization of a debiased
classifier improves performance. However, d-Margin does not demonstrate such
enhancements on the CMNIST dataset (see Figures C.6 and C.7 in Appendix C).
Moreover, AL-STD’s worst-group accuracy noticeably surpasses that of the
baselines, indicating that ERM trained on samples acquired through AL-STD
does not compromise any subgroup’s performance. Given the initial highly biased
labelled pool, all methods start with an s-predictivity of about 0.75, signifying
a strong correlation between prediction and gender. All baselines, including
AL-STD, succeed in reducing s-predictivity as more samples are acquired, with
random sampling expected to converge to a relatively high score compared to
other methods. It might appear surprising that even with random sampling,
s-predictivity decreases as more labelled samples become available; after all, a
spurious correlation exists in the unlabelled pool. However, there exist samples
for every combination of s and y in the data, enabling ERM to eventually find the
solution that minimizes the loss, favouring prediction of y over s. The challenge
for a small labelled pool arises because with limited information, models tend to
rely on simplistic rules (due to simplicity priors), which in our scenario translates
to leaning on shortcuts (predicting s instead of y).Similar trends are observed
in CMNIST, as illustrated in Figures C.6 and C.7 in Appendix C, although
d-Margin does not exhibit the same improvements as observed in CelebA; in fact,
it performs much worse than Margin.

Does target distribution need to be group-wise balanced? No, it is important to
emphasise that group-wise balance in the target distribution isn’t necessary;
instead, the key is that Y and S are statistically independent, a scenario often
encountered in real-world settings. We assessed AL-STD on an imbalanced CelebA
test set. Figure 4a illustrates the evaluation on the test set drawn from distribution
P where PP (Y, S) = PP (Y )PP (S), with PP (Y = 0) ̸= PP (Y = 1) and PP (S =
0) ̸= PP (S = 1). Despite the performance degradation compared to Figure 3 due
to the imbalanced nature, AL-STD still exhibits the best performance.

Does the method scale to a multi-class-multi-group setting? We evaluated AL-STD
on this task on CMNIST (see Appendix A for details). The superior performance
of AL-STD shown in Figure 4b suggests its scalability to any number of classes
and groups. This scalability is indeed feasible since we only need to compute the
importance weights for all pairs of (y, s) ∈ Y × S.
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Fig. 4: Average accuracy for (a) imbalanced test set (CelebA); (b) multi-class-
multi-group (CMNIST).

Results for Text modality – CivilComments. We conducted experiments with
α = 0.2 to simulate more realistic population shifts, resulting in a significantly
lower s-predictivity at the initial step compared to the other two image datasets.
From Figure 5a, we observe that AL-STD achieves approximately a ×2.7 reduction
in s-predictivity, while the best baseline (BADGE and Margin) achieves only a
×1.8 reduction. It is noteworthy that d-Margin does not improve performance
as significantly as observed on the CelebA dataset. We hypothesize that the
benefits of using an unbiased classifier depend on the model choice and the
dataset characteristics. This result also underscores the versatility of AL-STD
across various tasks.

0 200 400 600 800 1,000

0.1

0.15

0.2

# of labels queried

Margin Random
FAL AL-STD

Fig. 6: Equalised odds dif-
ference on Adult Income.
A high value implies less
equality of odds over groups;
thus, lower is better. See Fig-
ure C.10 for other metrics.

Results for Tabular data – Adult Income. We use
the Adult Income dataset to evaluate performance
for inherent subpopulation shifts and to compare
AL-STD with FAL. FAL is solely assessed on this
dataset due to its computational complexity for
the other datasets. Following [2], we use equalised
odds as the metric. As illustrated in Figure 6, de-
spite FAL’s explicit goal of minimizing unfairness
concerning the fairness metric, we do not observe
a declining trend as more acquisitions are made.
Instead, it fluctuates around its initial value, while
Random exacerbates unfairness due to escalating
shifts. These results also highlight that AL-STD
mitigates unfairness without requiring a fairness-
specific objective function.

Analysis of AL-STD. AL-STD is motivated by the intuition that its acquisition
function boosts the representation of minority subgroups in Lt, thereby reducing
the gap between the source Q and target P distributions. To understand the
mechanism behind AL-STD, we visualize the evolution of ŵ(G0), the importance
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Fig. 5: (a) s-predictivity on CivilComments dataset. See Figure C.9 for other
metrics. (b) The estimated importance weights aggregated over the minority
subgroups: EG′∈G0

[P̂ (G′)/Q̂(G′)]. Initially due to the high mismatch between P
and Q, the minority subgroup is given an excessive weighting and it decreases
exponentially as label acquisition is made, except for Random and CoreSet, while
AL-STD shows the fastest decrease.

weight of the minority subgroup, over time, in Figure 5b. This illustrates that the
weight ŵ(G0), especially in the initial stages, is notably higher than 1, indicating
a substantial distributional shift between P and Q. As learning progresses, the
weight gradually converges to a smaller value, suggesting a reduction in the
discrepancy between P and Q: Q → P . However, our empirical evaluation does
not show that the weight converges to a value close to one. This phenomenon may
be attributed to the fact that, ideally, acquiring new samples with Equation (6)
should alter Q, the joint distribution of Y and S, while keeping P , the marginal
distribution, unchanged. However, in practice, P also shifts due to prediction
errors and noise in the data. This occurrence arises when samples from the
majority subgroup are incorrectly classified as being in the region of disagreement,
leading a well-trained model to effectively reduce the likelihood of such instances.

6 Conclusion

We have explored the concept of subpopulation shift in the AL framework,
demonstrating the viability of constructing an AL algorithm – AL-STD – centred
on the notion of disagreement regions to handle subpopulation shift. Compared to
the baselines, AL-STD has twice the memory and time complexity: i) additional
memory resources are required for fθw ii) extra training time iii) extra inference
time on U . The time complexity can be reduced by running fθ and fθw in parallel.
However, this will burden memory consumption. Thus, it is not possible to reduce
both simultaneously. Dataset users should take extra care to perform a cost-
benefit analysis for selecting particular datasets for their machine learning (ML)
tasks. We should consider whether to start over with our initial labelled pool or
even our unlabelled pool. We note the general agreement of our ML community
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that any bias intervention – including the algorithmic solution presented here –
will only be effective in tandem with broader awareness and thoughtfulness in
building applications. Corrective actions such as bias interventions or, conversely,
explicit inaction should be recorded. As future work, it might be feasible to make
use of the size of the disagreement region in order to identify a good point to
terminate the AL procedure. Furthermore, this work focused on subpopulation
shift, but it might be possible to extend the method to also include a shift in
marginal distributions within every subpopulation, which presumably involves
exploring different weighting strategies.

Acknowledgments. This research was funded by the European Union. Views
and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Health and Dig-
ital Executive Agency (HaDEA). Neither the European Union nor the granting
authority can be held responsible for them. This work is supported by the Euro-
pean Research Council under the European Union’s Horizon 2020 research and
innovation programme Grant Agreement no. 851538 - BayesianGDPR, Horizon
Europe research and innovation programme Grant Agreement no. 101120763 -
TANGO. Novi Quadrianto is also supported by BCAM Severo Ochoa accreditation
CEX2021-001142-S/MICIN/AEI/10.13039/501100011033. Viktoriia Sharmanska
is currently at Epic Games.

References

1. Abernethy, J.D., Awasthi, P., Kleindessner, M., Morgenstern, J., Russell, C., Zhang,
J.: Active Sampling for Min-Max Fairness. In: Proceedings of the 39th International
Conference on Machine Learning. Proceedings of Machine Learning Research,
vol. 162, pp. 53–65. PMLR (2022-07-17/2022-07-23)

2. Anahideh, H., Asudeh, A., Thirumuruganathan, S.: Fair active learning. Expert
Systems with Applications 199, 116981 (Aug 2022). https://doi.org/10.1016/j.
eswa.2022.116981

3. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant Risk Minimization
(Mar 2020). https://doi.org/10.48550/arXiv.1907.02893

4. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep Batch
Active Learning by Diverse, Uncertain Gradient Lower Bounds. In: International
Conference on Learning Representations (2020)

5. Balcan, M.F., Broder, A., Zhang, T.: Margin Based Active Learning. In: Learning
Theory. vol. 4539, pp. 35–50. Springer Berlin Heidelberg, Berlin, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72927-3_5

6. Borkan, D., Dixon, L., Sorensen, J., Thain, N., Vasserman, L.: Nuanced Metrics for
Measuring Unintended Bias with Real Data for Text Classification. In: Companion
Proceedings of The 2019 World Wide Web Conference. pp. 491–500. ACM, San
Francisco USA (May 2019). https://doi.org/10.1145/3308560.3317593

7. Chouldechova, A.: Fair Prediction with Disparate Impact: A Study of Bias in
Recidivism Prediction Instruments. Big Data 5(2), 153–163 (Jun 2017). https:
//doi.org/10.1089/big.2016.0047

https://doi.org/10.1016/j.eswa.2022.116981
https://doi.org/10.1016/j.eswa.2022.116981
https://doi.org/10.1016/j.eswa.2022.116981
https://doi.org/10.1016/j.eswa.2022.116981
https://doi.org/10.48550/arXiv.1907.02893
https://doi.org/10.48550/arXiv.1907.02893
https://doi.org/10.1007/978-3-540-72927-3_5
https://doi.org/10.1007/978-3-540-72927-3_5
https://doi.org/10.1145/3308560.3317593
https://doi.org/10.1145/3308560.3317593
https://doi.org/10.1089/big.2016.0047
https://doi.org/10.1089/big.2016.0047
https://doi.org/10.1089/big.2016.0047
https://doi.org/10.1089/big.2016.0047


Disagreement-based AL for Robustness Against Subpopulation Shifts 15

8. Creager, E., Jacobsen, J.H., Zemel, R.: Environment Inference for Invariant Learn-
ing. In: Proceedings of the 38th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 139, pp. 2189–2200. PMLR (2021-
07-18/2021-07-24)

9. Dasgupta, S., Hsu, D.: Hierarchical Sampling for Active Learning. In: Proceedings
of the 25th International Conference on Machine Learning. pp. 208–215. ICML
’08, Association for Computing Machinery, New York, NY, USA (2008). https:
//doi.org/10.1145/1390156.1390183

10. El-Hasnony, I.M., Elzeki, O.M., Alshehri, A., Salem, H.: Multi-Label Active
Learning-Based Machine Learning Model for Heart Disease Prediction. Sensors
22(3), 1184 (Feb 2022). https://doi.org/10.3390/s22031184

11. Federici, M., Tomioka, R., Forré, P.: An Information-theoretic Approach to Distri-
bution Shifts. In: Advances in Neural Information Processing Systems. vol. 34, pp.
17628–17641. Curran Associates, Inc. (2021)

12. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian Active Learning with Image
Data. In: International Conference on Machine Learning. pp. 1183–1192. PMLR
(Jul 2017)

13. Geifman, Y., El-Yaniv, R.: Deep Active Learning over the Long Tail (Nov 2017).
https://doi.org/10.48550/arXiv.1711.00941

14. Hanneke, S.: Theory of Disagreement-Based Active Learning. Foundations and
Trends® in Machine Learning 7(2-3), 131–309 (2014). https://doi.org/10.1561/
2200000037

15. Hardt, M., Price, E., Srebro, N.: Equality of Opportunity in Supervised Learning. In:
Proceedings of the 30th International Conference on Neural Information Processing
Systems. pp. 3323–3331. NIPS’16, Curran Associates Inc., Red Hook, NY, USA
(2016)

16. Hutchinson, B., Denton, E., Mitchell, M., Gebru, T.: Detecting Bias with Generative
Counterfactual Face Attribute Augmentation. In: CVPR 2019 Workshop on Fairness
Accountability Transparency and Ethics in Computer Vision (2019)

17. Kallus, N., Zhou, A.: Residual Unfairness in Fair Machine Learning from Prejudiced
Data. In: Proceedings of the 35th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 80, pp. 2439–2448. PMLR (2018)

18. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without
discrimination. Knowledge and Information Systems 33(1), 1–33 (Oct 2012). https:
//doi.org/10.1007/s10115-011-0463-8

19. Kim, T., Lee, K.H., Ham, S., Park, B., Lee, S., Hong, D., Kim, G.B., Kyung,
Y.S., Kim, C.S., Kim, N.: Active learning for accuracy enhancement of se-
mantic segmentation with CNN-corrected label curations: Evaluation on kid-
ney segmentation in abdominal CT. Scientific Reports 10(1), 366 (Jan 2020).
https://doi.org/10.1038/s41598-019-57242-9

20. Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent Trade-Offs in the Fair
Determination of Risk Scores. LIPIcs, Volume 67, ITCS 2017 67, 43:1–43:23 (2017).
https://doi.org/10.4230/LIPICS.ITCS.2017.43

21. Koh, P.W., Sagawa, S., Marklund, H., Xie, S.M., Zhang, M., Balsubramani, A.,
Hu, W., Yasunaga, M., Phillips, R.L., Gao, I., Lee, T., David, E., Stavness, I., Guo,
W., Earnshaw, B.A., Haque, I.S., Beery, S., Leskovec, J., Kundaje, A., Pierson, E.,
Levine, S., Finn, C., Liang, P.: WILDS: A Benchmark of in-the-Wild Distribution
Shifts. In: International Conference on Machine Learning (ICML) (2021)

22. Kohavi, R., Becker, B.: UCI Adult Data Set. UCI Meachine Learning Repository 5
(1996)

https://doi.org/10.1145/1390156.1390183
https://doi.org/10.1145/1390156.1390183
https://doi.org/10.1145/1390156.1390183
https://doi.org/10.1145/1390156.1390183
https://doi.org/10.3390/s22031184
https://doi.org/10.3390/s22031184
https://doi.org/10.48550/arXiv.1711.00941
https://doi.org/10.48550/arXiv.1711.00941
https://doi.org/10.1561/2200000037
https://doi.org/10.1561/2200000037
https://doi.org/10.1561/2200000037
https://doi.org/10.1561/2200000037
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1007/s10115-011-0463-8
https://doi.org/10.1038/s41598-019-57242-9
https://doi.org/10.1038/s41598-019-57242-9
https://doi.org/10.4230/LIPICS.ITCS.2017.43
https://doi.org/10.4230/LIPICS.ITCS.2017.43


16 Y. J. Ng et al.

23. Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., Houlsby,
N.: Big Transfer (BiT): General Visual Representation Learning. In: Computer
Vision – ECCV 2020. pp. 491–507. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-58558-7_29

24. Lakkaraju, H., Kleinberg, J., Leskovec, J., Ludwig, J., Mullainathan, S.: The
Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of
Unobservables. In: Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. pp. 275–284. ACM, Halifax NS Canada
(Aug 2017). https://doi.org/10.1145/3097983.3098066

25. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied to
Document Recognition. Proceedings of the IEEE 86(11), 2278–2324 (Nov/1998).
https://doi.org/10.1109/5.726791

26. Lewis, D.D., Gale, W.A.: A Sequential Algorithm for Training Text Classifiers. In:
SIGIR ’94, pp. 3–12. Springer London, London (1994). https://doi.org/10.1007/
978-1-4471-2099-5_1

27. Liu, E.Z., Haghgoo, B., Chen, A.S., Raghunathan, A., Koh, P.W., Sagawa, S., Liang,
P., Finn, C.: Just Train Twice: Improving Group Robustness without Training
Group Information. In: Proceedings of the 38th International Conference on Machine
Learning. Proceedings of Machine Learning Research, vol. 139, pp. 6781–6792.
PMLR (Jul 2021)

28. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep Learning Face Attributes in the Wild. In:
Proceedings of International Conference on Computer Vision (ICCV) (Dec 2015)

29. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain Adaptation: Learning Bounds
and Algorithms. In: COLT 2009 - The 22nd Conference on Learning Theory,
Montreal, Quebec, Canada, June 18-21, 2009 (2009)

30. Noriega-Campero, A., Bakker, M.A., Garcia-Bulle, B., Pentland, A.S.: Active
Fairness in Algorithmic Decision Making. In: Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society. pp. 77–83. ACM, Honolulu HI USA (Jan
2019). https://doi.org/10.1145/3306618.3314277

31. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

32. Rawls, J.: Justice as Fairness: A Restatement. Harvard University Press (May 2001).
https://doi.org/10.2307/j.ctv31xf5v0

33. Roth, D., Small, K.: Margin-Based Active Learning for Structured Output Spaces.
In: Machine Learning: ECML 2006. pp. 413–424. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

34. Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally Robust Neural
Networks for Group Shifts: On the Importance of Regularization for Worst-Case
Generalization. In: International Conference on Learning Representations (2020)

35. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: Smaller, faster, cheaper and lighter (Feb 2020)

36. Sener, O., Savarese, S.: Active Learning for Convolutional Neural Networks: A
Core-Set Approach. In: International Conference on Learning Representations
(2018)

37. Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, Springer International Publishing, Cham (2012). https://doi.org/
10.1007/978-3-031-01560-1

https://doi.org/10.1007/978-3-030-58558-7_29
https://doi.org/10.1007/978-3-030-58558-7_29
https://doi.org/10.1145/3097983.3098066
https://doi.org/10.1145/3097983.3098066
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.1007/978-1-4471-2099-5_1
https://doi.org/10.1145/3306618.3314277
https://doi.org/10.1145/3306618.3314277
https://doi.org/10.2307/j.ctv31xf5v0
https://doi.org/10.2307/j.ctv31xf5v0
https://doi.org/10.1007/978-3-031-01560-1
https://doi.org/10.1007/978-3-031-01560-1
https://doi.org/10.1007/978-3-031-01560-1
https://doi.org/10.1007/978-3-031-01560-1


Disagreement-based AL for Robustness Against Subpopulation Shifts 17

38. Sharaf, A., Daume Iii, H., Ni, R.: Promoting Fairness in Learned Models by Learning
to Active Learn under Parity Constraints. In: 2022 ACM Conference on Fairness,
Accountability, and Transparency. pp. 2149–2156. ACM, Seoul Republic of Korea
(Jun 2022). https://doi.org/10.1145/3531146.3534632

39. Sohoni, N., Dunnmon, J., Angus, G., Gu, A., Ré, C.: No Subclass Left Behind:
Fine-Grained Robustness in Coarse-Grained Classification Problems. In: Advances
in Neural Information Processing Systems. vol. 33, pp. 19339–19352 (2020)

40. Zhao, E., Liu, A., Anandkumar, A., Yue, Y.: Active Learning under Label Shift.
In: Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics. Proceedings of Machine Learning Research, vol. 130, pp. 3412–3420.
PMLR (2021-04-13/2021-04-15)

41. Zhou, C., Ma, X., Michel, P., Neubig, G.: Examining and Combating Spurious
Features under Distribution Shift. In: Proceedings of the 38th International Confer-
ence on Machine Learning. Proceedings of Machine Learning Research, vol. 139,
pp. 12857–12867. PMLR (2021-07-18/2021-07-24)

https://doi.org/10.1145/3531146.3534632
https://doi.org/10.1145/3531146.3534632


18 Y. J. Ng et al.

A Datasets

CelebA5 [28]. We set the groups based on gender: S = {female,male} and
the prediction targets based on whether the photographed person is smiling:
Y = {not smiling, smiling}. This choice of S and Y has been used in previ-
ous work by [16] (see Figure A.1 for sample images). We conduct experiments
on two configurations containing two majority subgroups each: Setup (A)
{(not smiling,male), (smiling, female)}; Setup (B) {(not smiling, female),
(smiling,male)}.

Fig. A.1: Sample images of CelebA. From left to right: female not smiling, male
not smiling, female smiling and male smiling.

Coloured MNIST. Coloured MNIST [3] is based on the MNIST6 dataset [25]. This
dataset has been used in previous studies related to algorithmic fairness [8,11].
Two colours (red and blue) are applied randomly to the images, such that we
get 2 groups: S = {red,blue}. Furthermore, instead of the 10 digit classes that
MNIST has as the prediction targets, we merely use two classes: label 0 for
digits 0-4 (all digits < 5) and label 1 for digits 5-9 (all digits ≥ 5). Similarly,
the two configurations are defined as follows: Setup (A) {(0,blue), (1, red)};
Setup (B) {(0, red), (1,blue)}. For multi-class-multi-group CMNIST, digits one
to nine are split into triplets and form three classes Y = {0, 1, 2} and the groups
are defined by three colours S = {red,blue, green}. The minority subgroups are
{(0, red), (1,blue), (2, green)}. See Figure A.2 for sample images.

Fig. A.2: Sample images of Coloured MNIST.

CivilComments7 [6]. In CivilComments-WILDS [6,21], the prediction target is
whether an online comment is toxic or non-toxic: Y = {toxic, non-toxic}. This
5 Available for non-commercial research purposes only.
6 Creative Commons Attribution-Share Alike 3.0 license.
7 CC0 1.0 Public Domain license
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target label is spuriously correlated with mentions of certain demographic identi-
ties (male, female, White, Black, LGBTQ, Muslim, Christian, and other religions).
We follow the experimental procedure of [21], which defines 16 overlapping groups
for each of the above 8 demographic identities. Therefore, the group label s = 1
when a demographic identity is mentioned in the comment; otherwise s = 0. We
experiment with the following configuration: {(non-toxic,not indentified), (toxic,
indentified)}.

Adult Income [22]. The groups are defined based on race: S = {black,white}
and the prediction targets based on whether or not an individual’s income
exceeds $50K per year: Y = {income < $50k, income ≥ $50k}. The features
include attributes such as workclass, occupation, gender, education and etc.
With this dataset, no synthesised subpopulation shifts were introduced.

B Experimental details

The training-test split ratio is 70:30 for all datasets. We use the training set as
the unlabelled pool, but we apply subsampling to introduce distributional shifts.
Our experiments utilised some existing codebases. We used the implementation
from [4] for CoreSet and BADGE. For CivilComments and Adult Income, we
used the codebase from [38] and the codebase from [27] for data preprocessing.

CelebA. The dataset contains more than 200,000 images. We subsample 50,000
images from the dataset for our experiments. Our CelebA model is a pre-trained
ResNet-50 model [23]. We fine-tuned the head of the model with an SGD opti-
miser with a fixed learning rate of 0.001 for 80 epochs. During backpropagation,
gradients are clipped between [−0.5, 0.5], which we found improves stability. To
improve performance, all input images are resized to 224× 224 pixels.

Coloured MNIST. The foreground of every image from MNIST is coloured in
red, blue and green. The Coloured MNIST model consists of 2 blocks of {Conv2d,
BatchNorm2d, ReLU, MaxPool2d} as the backbone and one linear layer as the
classifier. We trained the model with an SGD optimiser for 120 epochs, fixing
the learning rate at 0.001.

CivilComments. Similar to CelebA dataset, we subsampled 50,000 sentences
from the whole dataset. We fine-tuned the uncased DistilBERT [35] base model,
following the standard procedure including using an AdamW optimiser, a learning-
rate warmup schedular, an optimiser which implements gradient bias correction
as well as weight decay, and applying weight decay to all parameters other than
bias and layer normalisation terms. We used a learning rate of 1× 10−6, a weight
decay coefficient of 0.1 and a batch size of 32. Our experiments are run on a GPU
with 24GB memory. We report the results over 3 trials using the acquisition size
of 5 (k = 5), α = 0.02, and an initial labelled pool of 100

https://github.com/JordanAsh/badge
https://www.dropbox.com/sh/sbao1hdrxvgmdfw/AAC0LsyQsIxNIYxVaolLhKj_a?dl=0
https://github.com/anniesch/jtt
https://github.com/google-research/big_transfer
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Adult Income. It is computationally expensive to evaluate FAL on the full dataset,
so we only subsampled 10,000 data points for our experiment. Data points are
standardised prior to training and inference. We use the SGDClassifier from
Scikit-learn [31] with logistic loss, L2 regularisation and the maximum iteration
of 2000.

C Additional results

Here, we present additional results for all datasets. In addition, we also study
the performance of active learning algorithms with respect to acquisition size k
and the confounding factor α. At a high level, the results are very similar for the
different k and α. We observe that AL-STD enhances the average and the worst-
case performance in the presence of spurious correlation in U . see Figures C.3,
C.4, C.6 and C.7. Apart from that, we also demonstrate the effectiveness of
AL-STD in realistic scenarios in which the dataset contains a moderate spurious
correlation (α = 0.2, see Figure C.9) as well as an inherent correlation (see
Figure C.10). Furthermore, AL-STD reduces s-predictivity better than other
baselines even when α is high (less affected by spurious correlation). Figures C.5
and C.8 show that AL-STD is robust to the acquisition size. Figure C.11 provides
the worst-group performance on imbalanced test set on CelebA and the multi-
class-multi-group on CMNIST.
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Fig.C.3: Performance on CelebA (Setup A) for varying confounding factor α.
We observe that AL-STD consistently outperforms the baselines throughout the
run in this configuration for varying α. The advantage of using d-Margin over
Margin is less evident for large α. The performance of BADGE improves relative
to that of other baselines when α increases.
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Fig.C.4: Performance on CelebA (Setup B) for varying confounding factor α.
The performance of all methods improves as α increases (less affected by spurious
correlation) in terms of average accuracy, worst-group accuracy and s-predictivity.
Especially when α = 0.1, AL-STD seems to be comparable with baselines (except
Random and CoreSet) for # of labels queried ≤ 200. After that, it outperforms
them until the labelling budget exhausted. CoreSet appears to work better for
larger α but it still performs similarly to Random. Besides that, the advantage
of d-Margin is less recognisable for larger α.
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Fig. C.5: Performance on CelebA (Setup A, α = 0.02) for varying acquisition size
k. All methods are consistent across all acquisition sizes.
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Fig. C.6: Performance on CMNIST (Setup A) for varying confounding factor α.
In this configuration, we observe similar results to those in Figure C.7 except
that for α = 0.05, the performance of AL-STD is comparable to that of Margin
in the early run.
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Fig.C.7: Performance on CMNIST (Setup B) for varying confounding factor α.
As α increase, the advantage of AL-STD is less evident. Particularly, AL-STD
exhibits a small margin of improvement in the early run.
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Fig. C.8: Performance on CMNIST (Setup A and α = 0.02) for varying acquisition
size k. Similar to Figure C.5, all methods perform consistently across various
acquisition sizes expect BADGE, where it converged to around average accuracy
of 81% when using a single batch size (k = 1), but around 78% when using k > 1.
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Fig.C.9: Evaluation on CivilComments (α = 0.2). We can see that due to the
moderate distributional shift, the worst-group accuracy is close to the average
accuracy. In terms of average accuracy, Random and d-Margin have similar
performance. AL-STD converged to a worst-group accuracy of around 67% as
opposed to all other baselines’ 63%.
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Fig.C.10: Evaluation on Adult Income (inherent shift). The large difference
between the average accuracy and the worst-case accuracy indicates that the
dataset is biased (or imbalanced over subgroups). We observed that AL-STD
improves both metrics as more samples are acquired, while the worst-group
accuracies of baselines remained close to the initial values.
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Fig.C.11: The y-axis in the figures represents the worst-group accuracy. The
figure on the left shows the worst-group accuracy evaluated on an imbalanced
test set which is in accordance with the average accuracy shown in main text.
While the right figure shows the worst-group accuracy on the CMNIST multi-
class-multi-group task, the curve appears to be less noisy compared to the binary
case. The worst-group performance of AL-STD is almost 10% higher than that
of baselines in the early run.
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