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Abstract. As Machine Learning (ML) and Neural Networks (NNs) be-
come more widespread across industries, there is growing interest in un-
derstanding how these systems make decisions. Despite the advantages
that AI-based systems offer to industrial applications, there is increasing
curiosity and concern regarding the decision-making processes of these
systems. To most users, these Artificial intelligence (AI) applications re-
main opaque "black boxes." Trustworthy AI necessitates transparency,
and Explainable Artificial Intelligence (XAI) seeks to provide this by of-
fering interpretations based on the data used in decision-making. While
many XAI models concentrate on supervised machine learning, there is
a considerable need for explainability in unsupervised machine learning.
Unsupervised learning methods such as clustering algorithms, by nature,
uncover hidden patterns and relationships within data. However, the re-
sulting clusters often lack context and alignment with domain expertise,
hindering their practical application. This paper explores the application
of SHAP (SHapley Additive exPlanations) to unsupervised learning and
proposes a novel approach to enhance explainability in cluster analy-
sis. By providing clear interpretations of cluster formations and aligning
them with real-world knowledge, this method aims to foster greater trust
in AI systems.

Keywords: Explainable AI (XAI) · Trustworthy AI · SHAP-C · clus-
tering · SHAP.

1 Introduction

Explainable AI (XAI) involves enabling AI systems to deliver comprehensible
explanations for the decisions and actions made. XAI seeks to bridge the gap
between the advanced capabilities of AI models and the requirement for human
interpretability and transparency. As AI systems become increasingly sophisti-
cated and integrated into critical domains such as healthcare, finance, and au-
tonomous vehicles, there is an advancing demand for AI models that offer clear
and understandable explanations, which is crucial for fostering trustworthy AI.

Many AI systems are considered "black boxes" because they produce results
without explaining the underlying logic. This means they make predictions or de-
cisions without providing any insight into how these conclusions are reached. This
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opacity can lead to concerns about bias and discrimination in decision-making.
Additionally, it hinders the adoption of AI systems in regulated industries, where
clear explanations are required to comply with legal and ethical standards. This
is where XAI steps in. Its aim is to provide clear and interpretable explanations
accessible to both experts and non-experts. These explanations can take vari-
ous forms, including textual descriptions, visualizations, or interactive interfaces.
By understanding the rationale behind AI decisions, users can gain trust in the
system, identify potential biases or errors, and make more informed decisions,
thereby enhancing the overall trustworthiness of AI applications.

1.1 Motivation and Contribution

Traditional clustering results often lack contextual support, presenting simplis-
tic numerical indices that can be meaningless to human interpreters. The high-
dimensional nature of the data used in clustering can result in groupings that
are not easily understood or implemented in real-world industrial settings. While
the field of Explainable AI (XAI) has made significant progress in analyzing su-
pervised learning tasks such as classification and regression, with approaches like
LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley
Additive exPlanations) providing instance-level explanations, these methods face
challenges when applied to unsupervised learning tasks like clustering. Despite
being touted as model-agnostic, these XAI techniques typically rely on labeled
data as a reference point for generating explanations, which is not available
in clustering scenarios. This limitation highlights the need for specialized ap-
proaches to explain clustering results in a manner that is both interpretable and
applicable to real-world contexts.

Unlike supervised learning, unsupervised approaches like cluster analysis
group similar data points together to identify patterns and characteristics from
a machine learning perspective. Some recent research attempts to directly use
the clustering assignments as the labels, hoping to leverage the existing features
to interpret the clusters with these labeled data [12]. However, because the un-
derlying models differ, the explanations generated may not be reliable for users.

To facilitate effective human-AI collaboration, increase the fidelity of the
clustering assignments, and mitigate the uncertainty of the biases or errors, an
explainable clustering method with adapted SHAP values is proposed in this
paper. The main contributions of the study are: first, we intuitively apply SHAP
to interpret centroid-based clustering approaches by defining the explanation
model with unlabeled data; second, We offer local explanations for specific in-
stances and provide global insights into the impact of input features on clusters
by evaluating the proximity of instances to them; and third, we validate the
value and benefits of the proposed method through the support and expertise of
domain experts in enhancing industrial processes.

The remainder of the paper is organized as follows: Section 2 discusses related
works on explainable clustering. Section 3 outlines the methodology, detailing
the integration of the clustering and SHAP methods. In Section 4, a case study
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with experimental results is well analyzed. The conclusions will be summarized
in the last section.

2 Related Work

2.1 Cluster Analysis

In contrast to supervised learning paradigms, such as classification which lever-
ages labeled data for model training and subsequent explanation of predictions
based on prior knowledge [3], clustering algorithms operate in the absence of
such labels. the scenario of cluster analysis approaches may vary and they all
aim at involving grouping similar data points together to form clusters based on
their inherent similarities or relationships.

Clustering algorithms employ diverse approaches and underlying principles
for forming clusters. These algorithms can be categorized into several taxonomies
based on different criteria, such as centroid-based (partitioning) clustering, hi-
erarchical clustering, and density-based clustering, etc. K-means is one of the
most outstanding centroid-based algorithms, it divides the dataset into K clus-
ters, then it iteratively assigns data points to the nearest centroid and updates
the centroids based on the mean of the assigned points. Hierarchical clustering
is categorized by top-down and bottom-up approaches, they are referred to as
divisive and agglomeration clustering, respectively. They construct the hierarchy
by iteratively merging or splitting the data points into clusters based on simi-
larity or dissimilarity measures. Unlike centroid-based or hierarchical clustering,
density-based clustering does not assume a predefined structure or a fixed num-
ber of clusters. Instead, it identifies dense regions of data points and considers
them as clusters, while separating regions with low density as noise or outliers.

2.2 Explainable AI on Cluster Analysis

Interpreting clustering results within the context of trustworthy AI presents sig-
nificant challenges due to the diversity of clustering criteria and the absence of
ground truth data. Firstly, clustering’s exploratory nature, aiming to uncover
patterns without pre-existing knowledge, hinders the establishment of defini-
tive "correctness" for cluster assignments. Secondly, the inherent ambiguity and
complexity of representative encoding often lead to diverse clustering solutions
depending on the chosen algorithm and its parameters. Finally, traditional clus-
tering approaches are opaque in their reasoning. They lack built-in mechanisms
to explain why data points are grouped together or how to distinguish clusters.
These non-intuitive representations make it difficult to present cluster charac-
teristics in readable explanations, thereby reducing users’ trust in the model’s
decision-making process.

While Explainable AI (XAI) has made significant strides in supervised learn-
ing, the interpretability of unsupervised learning techniques remains an under-
studied domain [4]. Existing approaches ([2], [4], [6], [7], [10], [11], [12]) refer to
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global explanation methods, which produce an overview of the clusters to cover
the majority of instances as a global explanation. providing an overview of the
clusters to encompass the majority of instances. However, a small proportion of
cases remain uncertain and do not fit well into these generalized rules.

[3] gives a systematic view of interpretable clustering, whereas Gilpin et al.
attempted to differentiate interpretability and explainability in this context.
Fraiman R. et al. [9] proposed CUBT (Clustering using unsupervised binary
trees), a method utilizing binary trees for clustering. [6] constructs specified
top-down decision trees to interpret clustering models by involving pre-defined
features’ importance as well as utilizing the splitting thresholds to guide the data
partitioning process. Conversely, H. Gilpin et al. [5] proposed ExClus (Explain-
able Clustering on Low-dimensional Data Representations), which focuses on
identifying influential attributes within each cluster. However, ExClus relies on
hyperparameter tuning and visualizations that limit scalability and reliability.
Another approach, CLTree[8], reformulates the clustering problem into a clas-
sification problem. Similarly, CLAMP (Cluster Analysis with Multidimensional
Prototypes) [11] considered "supervised interpretation" for clustering explana-
tion. It aims to depict clusters using decision rules generated from multidimen-
sional bounding boxes representing cluster prototypes. However, both methods
have limitations: CLTree interprets the decision tree path rather than the cluster-
ing model itself, and CLAMP’s explanations, based on selected bounding points,
can be unreliable as outliers and corner cases are not adequately addressed.

2.3 SHAP

SHAP stands for "SHapley Additive exPlanations," which is a unified frame-
work for explaining the predictions of machine learning models, introduced by
Lundberg and Lee [13]. It has gained significant popularity as a powerful tool for
interpreting the black-box nature of many machine learning algorithms. SHAP
is rooted in game theory and leverages Shapley values, a concept originating
from cooperative game theory.

The Shapley value fairly assigns a contribution to each player in a cooperative
game by considering all possible coalitions. In the context of SHAP, it assigns
importance values to features based on their input values and their contribution
to a model’s prediction. SHAP inherits three properties from the classic Shapley
values in the game theory: local accuracy, missingness, and consistency. Local
accuracy requires the approximation of the explanation model to match the
output of the original model as closely as possible. The missingness property
describes if a feature is set to "absence" in a possible coalition, it will no longer
contribute to the approximation. And the property of consistency describes if
the contribution of a feature value change caused by the model to be explained,
the SHAP value of that feature also changes following the same trend as the
contribution change.

Specifically, in the context of explaining machine learning predictions, SHAP
measures the contribution of each feature to the prediction of a particular in-
stance by taking all possible combinations of features into account. It considers
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both the presence and absence of features and calculates the average marginal
contribution of each feature across all those permutated coalitions. As the na-
ture of the additive feature attribution method, the SHAP explanation model g
is represented by a linear function:

g (z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (1)

where z′ ∈ {0, 1}M is the coalition vector [14], which represents the presence
or absence of features (z′ = 1 for the presence and z′ = 0 for the abscence of
feature i). M is the total number of the input features, and ϕi ’s are the Shap-
ley values, which quantify the importance or contribution of the corresponding
features. In a coalition, z′i = 1 indicates the presence of feature i, whereas the
value 0 of z′i represents the absence of feature i. The Shapley values capture
the marginal contributions of each feature, considering all possible coalitions of
features, and satisfy the desirable properties. It is important to note that ϕ0

is not the Shapley value of any feature but a base value, rather a base value,
defined as the expected value of the prediction when all features are absent. This
additive attribution method explains how to obtain the predicted value from the
base expectation by summing the contributions (Shapley values) of the present
features.

When approximating the predicted values for the possible coalitions, the
mapping function hx(z

′
i) is employed to convert the binary digits in the coali-

tion representation to the corresponding feature values from the original feature
space. Specifically, if a feature is observed (z′i = 1), it is mapped to its value
in the instance x. Otherwise, the recovered value is randomly sampled from the
dataset’s distribution for that feature. Consequently, the approximation of the
explanation model can be expressed as f(hx(z

′)) = g(z′), where f is the original
machine learning model being explained, and g is the SHAP explanation model.

On the other hand, the Shapley values themselves are applied during the
approximation to quantify the effect of the present features, represented by the
weighted values ϕi. These Shapley values are computed following the principles
of classic coalitional game theory:

ϕi =
∑

S⊆F\{i}

|S|! (|F | − |S| − 1)!

|F |!
·
[
fS∪{i}

(
xS∪{i}

)
− fS (xS)

]
(2)

In this equation, F represents the full set of features, and S denotes a possi-
ble coalition or subset of features from F . The Shapley value ϕi for feature i is
calculated by summing the marginal contributions of that feature across all pos-
sible coalitions. The marginal contribution is quantified as the difference between
the model’s output with and without feature i, weighted by the combinatorial
term |S|!(|F |−|S|−1)!

|F |! . This term ensures a fair distribution of the total contribu-
tion among all features, considering the different possible coalitions in which a
feature can be present or absent. By summing these weighted marginal contri-
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butions over all coalitions, the Shapley value ϕi captures the overall importance
or contribution of feature i to a given prediction produced by the model.

Empirically, the SHAP model typically sets the target as the probability of
the predicted class in supervised learning tasks. Consequently, the explanations
provided by the model aim to highlight the positive or negative influence of fea-
tures by describing how they contribute to increasing or decreasing the predicted
probability.

However, in unsupervised learning scenarios, there is no probabilistic function
or target variable to compare against. As a result, these explanation approaches
cannot be directly applied to unsupervised learning models, necessitating the
development of tailored techniques for interpreting SHAP values in the unsu-
pervised setting. Furthermore, SHAP requires a reference or baseline point to
compare feature contributions against. The choice of this reference point can sig-
nificantly impact the resulting explanations, as an arbitrary selection may affect
the interpretability and reliability of the SHAP values.

3 Methodology

The primary goal of the proposed work is to leverage an altered SHAP approach
to seamlessly provide explanations in the form of feature importance for centroid-
based clustering methods. The proposed method contributes to three key aspects:
First, it focuses on the selection of an appropriate centroid-based clustering algo-
rithm, such as K-means or K-medoids, which are widely used and interpretable
techniques. Second, it introduces an adjustment to the SHAP framework to
enable the interpretation of clustering results, overcoming the challenges of ap-
plying SHAP to unsupervised learning scenarios. Third, it demonstrates the ca-
pability to generate both global explanations for the overall clustering structure
and local explanations for individual instances within each cluster.

3.1 The selection of the clustering algorithm

However, a crucial limitation of existing interpretable models is their inability to
effectively represent the results of clustering algorithms. These models typically
present the clustering results solely in terms of cluster indices or labels, lacking
a suitable metric to capture the underlying structure and characteristics of the
clusters.

Centroid-based clustering methods, such as K-means or K-medoids, are a
class of algorithms that assign data points to clusters based on the similarity of
their features to the centroid of each cluster. The objective of these methods is to
minimize the intra-cluster distance while maximizing the inter-cluster distance.
By treating the centroid as a representative of the cluster, the distance between
a data point and the cluster centroid can be utilized to estimate the similarity
between the data point and the cluster, reflecting the extent of commonality
between the data point and its assigned cluster.
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f(p) = dist(Ccentroid, p) =

√√√√ M∑
i=1

(Ci − pi)2 (3)

K-Means is one of the most widely adopted and well-established centroid-
based clustering algorithms. It is a simple yet effective technique that partitions
the data into K clusters based on the similarity of the data points to the cluster
centroids. Without prior knowledge of the dataset, an arbitrary selection of K
can introduce uncertainty and impact the subsequent processes. To fairly deter-
mine the optimal value of K, Silhouette analysis is applied in this stage for a
set of possible values, which are empirically collected after a preliminary study
of the dataset.

3.2 SHAP-C: Redefine SHAP for clustering interpretation

As previously discussed, SHAP specifies the explanation by approximating the
prediction of the model to be interpreted. Generally, this approximation is either
the probability of the predicted class in a classification task or the approximated
value of the actual predicted value in a regression task. However, due to the
nature of unsupervised learning and the lack of ground truth, the application of
SHAP cannot directly define the objective of the explanation function.

To address this challenge and make the explanation consistent with the clus-
tering task, the estimation of SHAP values is defined as the distance between the
target data point and its corresponding cluster centroid. This distance is typi-
cally measured using a distance metric, such as Euclidean distance, Manhattan
distance, or any other suitable distance function.

On the other hand, Lundberg and Lee described that the base value would
be the expectation of predicted values in terms of the deterministic class in their
original work [13]. In this paper, we propose using the average within-cluster sum
of squares (WCSS), inspired by the Elbow method for optimizing the number of
clusters in cluster analysis, as the basis for the explanation approximation.

f ′ (z′) =
1

|N |
∑
pj∈N

dist (Ccentroid, pj) +
M∑
i=1

ϕiz
′
i (4)

Here, f ′ (z′) is the proposed adjusted SHAP function, N is the set of instances
in cluster C, and |N | is the number of instances in cluster C. dist (Ccentroid, pj)
measures the distance from the centroid to a data point pj within the cluster.
The linear weighted model f ′ (z′) is trained by optimizing the loss function L
shown as follows:

L (f, f ′, π) =
∑
j∈|N |

[
f
(
h−1
x (zj

′)
)
− f ′ (zj

′)
]2

π (zj
′) (5)

The loss function optimizes the linear model f ′ by utilizing the sum of squared
errors with a specified coefficient π. This coefficient, also known as the SHAP
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kernel proposed in the original work, is used to attain the weighting that complies
with the Shapley values.

3.3 Representations of the SHAP-C explanations

While SHAP has been widely introduced in various XAI literature as a local
method, providing explanations for individual predictions, its properties and
characteristics can be leveraged to derive global explanations as well. SHAP
attributes the contribution of each feature from a base value to approximate the
explainer’s output. Although the contribution can be either positive or negative,
indicating the promotion or demotion of the feature, the impact of the feature
is reflected by its absolute Shapley value.

Additionally, adhering to the consistency property, SHAP ensures fidelity
for all input features in its local explanations. This property implies that if
a feature’s contribution to the model’s prediction changes, its Shapley value
will change accordingly, reflecting the same trend. Consequently, the individual
Shapley values of a feature can be utilized as a measure of its global importance
across multiple instances. To determine the global importance of a feature within
a cluster, the average accumulation of the absolute weighted feature values across
a set of instances belonging to the cluster can be calculated:

Ii =
1

|N |

N∑
j=1

|ϕj
i | (6)

In this equation, Ii represents the global importance of feature i within the
cluster, N is the set of instances belonging to the cluster, and |ϕj

i | denotes
the absolute value of the Shapley value for feature i in instance j. This global
explanation, derived from the local SHAP explanations, provides insights into
the most influential features that define the cluster’s structure and composition,
facilitating a better understanding of the clustering results.

4 Experiments

4.1 Dataset

In this section, we conduct experiments using two diverse datasets: a high-
quality, publicly available UCI dataset as a benchmark [38] and a practical
dataset provided by our industrial collaborator.

Seeds dataset. The first experiment utilizes the seeds dataset, provided
by the Institute of Agrophysics of the Polish Academy of Sciences in Lublin
[39]. This dataset comprises 210 instances, each containing seven attributes that
describe the internal kernel structure of wheat. These instances are sampled
from three different varieties of wheat seeds: Kama, Rosa, and Canadian. The
measurements from the wheat kernels can help align agricultural and biological
knowledge with the clustering process.
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Industrial practical dataset. As the second experiment relies on an indus-
trial database, a subset of data is gathered specifically related to an industrial
process. Due to privacy protocols enforced by the cooperative industry providing
the database, the actual names of the features are concealed and represented by
standardized dummy codes. The dataset consists of 3741 records and includes
seven predetermined attributes. With the guidance of experts, the appropriate
number for clustering the data is verified by comparing various iterations of the
clustering results; and the most influential attribute for each industrial step has
been accurately identified, and the sequence of these attributes is documented
as domain knowledge for the reference of the produced explanations.

4.2 Experimental Setup

K-Means, as previously discussed, serves as the primary centroid-based clus-
tering method in this study. In the first experiment, the number of clusters is
predetermined based on existing class labels. The second experiment employs a
more nuanced approach, combining domain expert input with the Silhouette Co-
efficient metric (Rousseeuw, 1990) to determine the optimal number of clusters.
The Silhouette Coefficient, applied in the second experiment, evaluates cluster-
ing quality by computing the mean Silhouette Coefficient across all data points
for various cluster numbers. It takes into account both the cohesion (how close
data points are to other points within the same cluster) and the separation (how
far apart data points are from points in other clusters). Both determinations en-
sure the K-Means produces reliable assignments of the cluster for all input data.
Upon completion of the clustering process, centroid information is extracted, and
within-cluster distances (between data points and their respective centroids) are
calculated and documented.

Following the clustering phase, the proposed SHAP-C is implemented to
generate SHAP values for individual data points within each cluster. More im-
portantly, our adapted method inherent SHAP properties, then it is capable of
offering two levels of explanation: the individual level aims at revealing the con-
tribution of features to specific cluster assignments; the global overview demon-
strates feature importance across specified clusters by applying equation 6 to
calculate average accumulated SHAP values for each feature.

4.3 Experimental Results

Table 1. Comparative performance metrics for clustering algorithm on the seeds
dataset

Cluster Number Size Precision Recall F1
1 70 0.85 0.81 0.83
2 70 0.98 0.86 0.92
3 70 0.85 1.00 0.92



10 Anonymous et al.

As described in the UCI repository, the three numerical labels in the Seeds
dataset indicate Kama, Rosa, and Canadian wheat varieties, respectively. Table
1 compares the performance of the clustering model across these diverse wheat
varieties. Cluster 2 has the highest precision (0.98), indicating that 98% of the
instances assigned to this cluster are likely from the same wheat variety. Cluster
3 captures all instances of one variety (perfect recall) but includes some instances
from other varieties (lower precision). Cluster 1 seems to be the most challenging
to classify accurately, possibly representing the variety with features that overlap
more with the others.

Different from the feature analysis based on conventional statistical analyses,
the adapted SHAP values serve as indicators of each feature’s contribution to the
clustering process. Table 2 presents an analysis of feature contributions for each
cluster in the Seeds dataset using the mean absolute SHAP values. The features
are ranked according to their average SHAP values, indicating their impact on
the clustering process for each corresponding wheat variety.

The feature rankings show some variation across the three clusters, but no-
tably, Asymmetry coefficient and Area consistently emerge as the top two
contributing features in all clusters. This suggests that the model heavily relies
on these two characteristics when making clustering decisions. Unlike Cluster 2
and Cluster 3, Cluster 1 shows a more even distribution of importance among
its top four influential features, with only minor differences in their mean SHAP
values. This lack of highly distinctive features might explain the slightly lower
performance observed for Cluster 1 in previous analyses. Additionally, Contrary
to expectations based on previous research [40], which implied that kernel-related
features (width, length, and groove length) are crucial for wheat variety identi-
fication, our experimental results show a different pattern. These kernel-related
features generally show lower average SHAP values, indicating less contribution
to the clustering process than anticipated.

To accurately distinguish how the selected features contribute to the clus-
tering process, we need to look beyond individual instances and consider the
overall attribute contributions. The experimental results referred to Table3. The
attributes in each subsection are also sorted based on the average SHAP absolute
values, so the rank reflects the average contribution of the attributes when doing
clustering. In this study, we benefit from collaboration with industrial domain
experts. Their feedback on our clustering analysis allows us to compare decision-
making strategies between human expertise and AI-driven insights, providing a
valuable perspective on the practical implications of our results.

The first section of the table provides a global overview of attribute contribu-
tions across all records in the dataset. Feature_4, feature_7, and feature_6
emerge as the most influential in the clustering process. According to our domain
experts, these three attributes are associated with the final stages of the produc-
tion process. This insight indicates that the finishing stages play a significant
role in product manufacturing throughout the entire industrial workflow.
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Feature Contributions in Cluster 1
Ranking Feature mean_abs_shap

1 Asymmetry_coefficient 0.273257
2 Area 0.123926
3 Width_of_kernel 0.081337
4 Length_of_kernel_groove 0.073772
5 Length_of_kernel 0.049213
6 Perimeter 0.043966
7 Compactness 0.014615

Feature Contributions in Cluster 2
Ranking Feature mean_abs_shap

1 Asymmetry_coefficient 0.506818
2 Area 0.124254
3 Width_of_kernel 0.05329
4 Length_of_kernel_groove 0.04211
5 Length_of_kernel 0.040932
6 Perimeter 0.034227
7 Compactness 0.008723

Feature Contributions in Cluster 3
Ranking Feature mean_abs_shap

1 Asymmetry_coefficient 0.485764
2 Area 0.089792
3 Width_of_kernel 0.073262
4 Perimeter 0.029747
5 Compactness 0.027634
6 Length_of_kernel_groove 0.026165
7 Length_of_kernel 0.022423

Table 2. Features contributions in each
cluster.

Global Attribute Contributions
Ranking Feature mean_abs_shap

1 feature_4 0.15709
2 feature_7 0.09587
3 feature_6 0.08819
4 feature_2 0.07866
5 feature_1 0.07473
6 feature_3 0.03877
7 feature_5 0.00227

Attribute Contributions of Cluster 3
Ranking Feature mean_abs_shap

1 feature_4 0.10812
2 feature_7 0.09747
3 feature_6 0.08335
4 feature_2 0.05572
5 feature_1 0.05020
6 feature_3 0.05013
7 feature_5 0.00377

Attribute Contributions of Cluster 7
Ranking Feature mean_abs_shap

1 feature_4 0.26592
2 feature_2 0.08837
3 feature_1 0.08674
4 feature_7 0.07895
5 feature_6 0.07822
6 feature_3 0.06239
7 feature_5 0.00197

Table 3. The attribute contributions of
the groups are calculated by averaging
the absolute SHAP values for each fea-
ture within each group.

On the other hand, The two rest subtables in Table3 exhibit the rankings
of the feature contribution on Cluster 3 and Cluster 7, offering insights into the
specific characteristics of these product groups.

For Cluster 3, while the overall ranking of features aligns closely with the
global explanation, the specific SHAP values differ, reflecting the unique at-
tributes of this cluster. The similarity in feature ranking to the global overview
suggests that Cluster 3 likely represents products that closely follow the typical
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production process. These could be considered the "regular" products in the
manufacturing line.

Cluster 7, shown in the bottom subtable, presents a notably different fea-
ture distribution. While feature_4 remains the most important, feature_2
and feature_1 take the second and third places, respectively. Our domain ex-
perts have identified these features as being related to the early stages of the
industrial production process. This shift in feature importance suggests that for
products in Cluster 7, the initial stages of production have a more significant
impact on the final outcome than in other clusters.

The distinct feature ranking in Cluster 7 implies that the characteristics
of products in this category may be influenced by additional factors not fully
captured in the clustering process. This unique profile suggests that special at-
tention should be given to the initial stages of the production process when
manufacturing products that fall into this category.

Fig. 1. The SHAP values for an individual explanation on clustering a specified in-
stance into the group. The baseline E[f(x)] shows the average within-cluster distance
of the cluster. The figure presents how the feature contribution is distributed when
getting to the nearest cluster centroid from the current position.

Applying our proposed method to the practical dataset related to the indus-
trial process allows us to gain insights into individual instances. Figures 1 and 2
illustrate SHAP-C individual explanations for two different records, showcasing
the contribution of all input features during the clustering process.

Figure 1 represents an instance assigned to Cluster 0 with a minimal intra-
cluster distance of 0.205 across all possible clusters. The diagram uses colored
directional bars to illustrate how each attribute contributes to positioning the
instance relative to the cluster centroid, starting from the base value E[f(x)].
Red bars indicate features that increase commonality with the cluster, while
blue bars represent features that differentiate the instance from the cluster’s
typical characteristics. In this case, feature_4 stands out with a large positive
SHAP value, strongly contributing to the record’s membership in the cluster.
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Fig. 2. Another individual explanation of an instance in Cluster 3.

Conversely, feature_3 and feature_5, represented by short blue bars, slightly
push the instance away from the cluster centroid.

Figure 2 presents a different instance from Cluster 3, which has drawn par-
ticular attention from domain experts due to its unexpected assignment to this
cluster. This case study demonstrates the diverse distribution of attribute con-
tributions and highlights the value of combining machine learning insights with
expert knowledge. Upon closer examination, the small difference of 0.004 be-
tween the base value and the within-cluster distance indicates that this record is
very close to the cluster centroid, despite the experts’ initial surprise at its cat-
egorization. This proximity suggests that the clustering algorithm has identified
similarities that may not be immediately apparent through traditional analysis.

In the figure, Feature_2 emerges as the most influential attribute, strongly
driving the record toward the cluster center. This insight could provide valuable
information about a key characteristic that defines this cluster, potentially re-
vealing new patterns or relationships in the production process. Notably, more
than half of the features have a negative impact on the assignment process,
slightly pulling the instance away from the centroid. This complex interplay of
features pushing and pulling the instance within the cluster space illustrates the
nuanced nature of the clustering process and the multifaceted characteristics of
the products.

Comparing both diagrams reveals that even within the same cluster, the con-
tribution of attributes can vary significantly between instances. This variability
highlights the complexity of the clustering process and the subtle differences
between products within the same category. Unlike global explanations, these
individual SHAP explanations offer a machine learning perspective that allows
for a detailed understanding of why specific products are assigned to certain
categories. They provide insights that complement and sometimes challenge tra-
ditional domain knowledge, offering a fresh view of product characteristics and
their relationships.
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Specifically, these instance-level explanations assist in identifying potential
outliers or unique products within a cluster, which might not be apparent through
conventional analysis. The experts may be able to take care of the instances
where machine learning insights differ from traditional domain expertise, prompt-
ing further investigation.

5 Conclusion

Machine learning models are extensively employed in real-world applications,
yet their outputs can often be confusing or incomprehensible, even to domain
experts, despite satisfactory performance metrics. This research investigates the
challenges of explaining unsupervised learning models, particularly clustering
algorithms. The issue that renders most existing model-agnostic explanation
methods unavailable for tasks like clustering is addressed and discussed. Due to
the lack of prior knowledge, clustering models may provide inaccurate estima-
tions, and their results are difficult to interpret and validate.

In this study, we enhance transparency in AI by proposing an adapted
method SHAP-C for explaining centroid-based clustering. This approach aims
to achieve three key objectives: first, it extends the flexibility of model-agnostic
methods to effectively explain clustering results; second, it elucidates feature
attribution in the cluster assignment process, providing clarity on the decision-
making mechanisms; and third, it aggregates individual explanations to summa-
rize the influential features that formed clusters based on their contributions.
By addressing these aspects, our method promotes trust and transparency in
AI systems, ensuring that clustering algorithms are more comprehensible and
reliable for users.

Subsequently, the proposed method is implemented on a real-world industrial
dataset, and the resulting explanations offer an intuitive perspective on analyz-
ing clustering results with the assistance of domain expertise. Overall, SHAP-C
offers a more transparent view of the clustering model, making the resulting
clusters understandable and meaningful to users, rather than requiring manual
interpretation of individual records to conclude cluster properties.

Considering the experimental conditions, future research will focus on the
following topics. First, as the explainability of the model may not be quantified,
there is a need to establish a metric to evaluate the performance of explanation
models. Second, current explanation approaches produce results from geometric
or statistical perspectives. Further investigation will focus on involving additional
knowledge bases to improve the model’s explainability and align it with domain
knowledge and real-world contexts.
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