
Scenario-based Automatic Testing of a Machine
Learning Solution with the Human in the Loop

Author information scrubbed for double-blind reviewing

Affiliation scrubbed for double-blind reviewing

Abstract. More and more applications rely on machine learning, par-
ticularly interactive online learning, to make decisions tailored to human
needs and situation. Like any program, the behavior of learning pro-
grams must be verified and validated. Testing is one way to achieve this.
In this paper, we analyze the challenges of testing machine learning so-
lutions, focusing on programs that learn online and in interaction with
human users. Given the issues arising from the presence of the human in
the loop, the non-determinism and the dynamics of online learning, we
propose a scenario-based approach. We apply it to the test of OCE, a
learning program that builds applications in ambient environments with
the user in the loop. In addition, two prototype tools are presented to im-
plement test scenarios and automate their execution for the assessment
OCE.

Keywords: Interactive machine learning · Human-in-the-loop machine
learning and decision · Assessment · Test · Scenario

1 Introduction

As part of a research project on Ambient Intelligence [6] called “OppoCompo”, a
solution based on interactive machine learning (IML) has been proposed. This so-
lution dynamically builds applications for a human user in ambient environments
(Internet of Things, Smart City, etc.). The “Opportunistic Composition Engine”
called OCE learns the needs and preferences of the human user to automatically
build applications adapted to their context [26]. OCE learns online, that is, con-
tinuously from dynamically appearing data that is not known in advance [20], by
reinforcement [23], and interactively [7]. OCE proposes these applications to the
user who ultimately decides whether to accept them or not. Thus, the decision
is shared between the human and the learning machine. Additionally, the user
in the loop provides feedback on each proposed application, from which OCE
automatically learns and builds a model usable for future decisions. Therefore,
OCE and the human user form an hybrid intelligent system.

A prototype of an opportunistic composition engine has been tried out. It
does indeed propose applications to the user. However, to verify that the learning
solution works in a useful and trustworthy way, it is necessary to evaluate the
quality of its propositions, i.e., their adaptation to the human user and the
ambient environment. To achieve this, we are exploring a testing-based approach:



2 Author information scrubbed for double-blind reviewing

the problem is to test an online machine learning solution with the user in the
loop. One of the challenges is the continuous presence of the human user in the
interaction and decision loop, which cannot be maintained in a large-scale and
repeatable testing process.

Testing machine learning-based solutions is a recent research field. Most of the
work focuses on offline supervised learning and does not encompass all machine
learning paradigms, particularly online learning [20] or interactive learning [7].

In this paper, we highlight the difference between testing models built by
machine learning and testing the learning program that builds the models. We
target the learning program, and we analyze the issues of testing in the
context of online and interactive learning. We propose an approach based on the
notion of scenario to design, implement, and execute test cases. We have
developed two tools, Maker and Runner, which allow the implementation and
execution of test scenarios coupled with OCE.

This paper is organized as follows. Section 2 presents the principles of oppor-
tunistic software composition. Section 3 outlines the main challenges in testing
an online learning program with the human in the loop, based on key works in
the literature. Section 4 introduces our scenario-based testing approach, then
presents two tools for implementing (Maker) and executing (Runner) scenarios
for evaluation purposes and describes their use and integration with OCE. Sec-
tion 5 discusses how other works use the notion of scenario to test software and
references some tools for developing ML-based solutions. Finally, Section 6 sum-
marizes our contribution and its limitations, and discusses some perspectives.

2 OCE, an Online Learning Program with the User in
the Loop

A software component is an executable software entity that provides services
and requires others to function [21]. Component-based programming involves
assembling components by connecting their services to form an application. The
Figure 1 represents in UML [17] an example of a text-to-speech application that
assembles four components: TextInput for text input, TextToVoice for text-
to-voice conversion, a Speaker, and a Button. TextInput uses the TextProcess
service provided by the TextToVoice component to transmit the text. Text-
ToVoice converts the text into an audio signal and passes it to the Speaker
component via the VoiceProcess service. The Speaker component plays the au-
dio signal, which volume can be adjusted using the Button and transmitted to
the Speaker via the SetVolume service.

OCE is a hybrid ambient intelligence solution that dynamically builds ap-
plications based on software components present in the ambient environment
and knowledge learned about the user’s preferences [26]. OCE automates the
assembly operation. In ambient environments, characterized by their open and
dynamic nature, components may appear or disappear unpredictably. Addition-
ally, the user’s needs and preferences can vary over time or depending on the
current situation. A major challenge is therefore to manage the variability of



Scenario-based Automatic Testing of ML with the Human in the Loop 3

Fig. 1. Text-to-speech application represented in UML [17]

these environments and to offer the user “right” applications according to their
situation.

Fig. 2. OCE application building process

A “cycle” of OCE builds an application through several steps (Figure 2):

1. OCE detects the available components in the user’s ambient environment.
2. Based on the available components and knowledge about the user’s needs

and preferences, OCE decides on the assembly to build.
3. OCE presents the assembly proposition to the user through a graphical in-

terface.
4. The user accepts, modifies, or rejects the assembly proposition. This action

translates into a reward, which serves as the source for OCE’s learning.



4 Author information scrubbed for double-blind reviewing

5. OCE learns by reinforcement.

OCE repeats application building cycles. Thus, through successive cycles and
interactions with the user, OCE learning solution builds and evolves a model on
which the future decisions will be made.

A working prototype of OCE has been developed. Does it propose applica-
tions to the user that are tailored to their preferences and needs in the current
situation? Testing is a way to answer this question and to build trust in OCE.
However, testing software based on machine learning, especially when the user
is at the center of the process, presents challenges that we analyze in the next
section.

3 Machine Learning based Software Testing

Testing is an activity within the software development process [2, 9] that aims
to uncover defects1, compare different versions, tune parameters, or convince
stakeholders that the software meets requirements.

Testing consists in running the software in various cases, in an environment
close to the production environment, and then analyzing the results. Within the
development team, it is the “oracle” that evaluates and interprets these results.
If they indicate that the program does not behave as expected, the development
team investigates the presence of a defect, returns to development to fix it, and
then conducts another round of testing.

Testing machine learning solutions poses particular challenges, especially
when the program learns online and interacts with humans, as is the case with
OCE.

3.1 Problem Analysis

Unlike research conducted in the field of traditional software testing, research
on testing machine learning-based software is relatively recent. Several papers
address the general problem of developing machine learning-based software from
a software engineering perspective but provide only brief explanations on testing
issues [8, 14].

However, a few significant papers have been published in recent years. Zhang
et al. [27] provided a comprehensive study on testing machine learning-based
software, focusing on model evaluation and properties such as accuracy, robust-
ness, and fairness.

Riccio et al. [19] systematically analyzed the literature and highlighted the
main challenges related to testing, including test case specification, adequacy
criteria, cost, and the oracle problem.

In the following, we highlight the difference between testing models and test-
ing learning programs. Then, we focus on testing online learning in interaction
with human users.
1 A defect (or bug) is defined as an imperfection or flaw in a software product that

does not meet the requirements or specifications.



Scenario-based Automatic Testing of ML with the Human in the Loop 5

Testing models vs. testing learning programs Machine learning encom-
passes learning activities, i.e., building a model by a learning program, and
decision-making activities, i.e., using the model, whether these activities are in-
terleaved or not. Models and learning programs are distinct artifacts, each of
them requiring testing.

Model testing Before deploying a model, testing it involves answering the
question: is the model a “good” model? In other words, did the machine “learn”
effectively? Model testing shares the same goals as traditional software testing
but focuses on quality properties specific to the model such as accuracy, rele-
vance, or robustness [27]. This poses several challenges that we examine below.

Since models result from running a learning program fed by examples, defects
may arise from the training data, the learning program, or a mismatch between
the two (when a program poorly learns from certain data) [27]. However, it can
be challenging to trace the source of a defect to correct it. Indeed, models do
not have the same materiality as traditional software: they do not consist of a
simple source code but are composed of more or less tangible various elements
(code, parameters, data) and often operate as a “black box”. In practice, focusing
on specific properties can help locate the sources of defects: for example, testing
the relevance of the model (such as overfitting [10]) can help identify defects in
the training data.

On the other hand, machine learning is sometimes used by development teams
in situations where the expected results are not known in advance [15]. In this
case, predicting and interpreting test results is an additional challenge, and it
can be difficult to determine whether a test passes or not. Software exhibiting
this problem, known as the oracle problem, is often considered non-testable [25]
due to the absence of an oracle or the difficulty in designing one [16].

Learning program testing Although the two problems are closely related,
testing a learning program is not the same as testing a model. The question
is: does the learning program “learn well” across the entire scope for which it
was designed? In other words, does the learning program build “good” models
relative to the data provided to it?

To answer this question, testers need to have different models built by the
learning program for different use cases, with the aim of subsequently testing
each of these models. The selection of training data to build these models is
crucial for the overall significance of the tests. Moreover, since it is not possible
to specify expected models for comparisons (the oracle problem again), each
model must be tested to indirectly assess the quality of the learning program.
Testing learning programs is therefore costly; it requires significant expertise
and, as much as possible, automation.

In this work, we target the problem of testing learning programs.

Testing online learning programs in interaction with humans In the
case of online learning in interaction with humans, testing presents particular
challenges that we examine here.



6 Author information scrubbed for double-blind reviewing

In general, the quality of a model depends on the quality of the training data.
In the case of OCE, this cannot be controlled due to the unpredictable dynamics
of the ambient environment, as well as because the user needs, expectations, or
preferences may vary over time and depending on the situation. The user may
also misunderstand the model’s outputs and so provide irrelevant feedback. In
such cases, the model may produce test results that are deemed incorrect even
though the learning mechanism is working properly. Therefore, it is challenging
to determine whether the machine failed to learn or if the issue arises from
interactions between the user and the learning program. Furthermore, the quality
of the results produced by a model may depend on users: they may be good for
one user but not for another. More generally, it is difficult to define test cases
that encompass a wide range of user profiles while anticipating their dynamics
or possible inconsistencies.

Under these conditions, the question of testing does not concern the presence
of a defect in the training data; rather, it involves verifying the consistency
between the training data and the model built from that data. Thus, a test case
must first construct a model in interaction with a user and then evaluate it,
which makes both the design and the execution of the test more complex.

Moreover, the potentially non-deterministic nature of machine learning [13,
22], particularly (but not exclusively) in the case of online learning, must be
taken into account. The randomness part inherent in learning and decision-
making mechanisms leads to variable outcomes from one execution to another,
even with the same configuration and inputs. Thus, it can happen that the
model does not produce expected results during tests even though the learning
and decision-making mechanisms are working correctly [12]. For example, in
reinforcement learning (often performed online), it is normal for the machine to
sometimes choose, for exploration purposes, a solution that is neither the best nor
the logically expected one. Therefore, it is difficult to determine if an unexpected
output results from a random factor or a flaw in the learning mechanism.

Another issue concerning the test process management lies in the continuous
involvement of humans in the learning and decision loop: during the development
phase of the learning program, it is not feasible to engage human users (or
testers fulfilling their role) in order to test and repeat a significant number of
cases. Therefore, conducting the test process, it is necessary to “automate” the
interaction with humans.

Summary Below, we outline the research questions we have identified regarding
the automated testing of learning programs. The first two relate to the design
and implementation of test cases, while the latter two concern their execution
and analysis:

– RQ1.1: How to design a test case that includes learning and evaluation
steps, while integrating human interaction?

– RQ1.2: How to implement a test case with the purpose of automating its
execution?

– RQ2.1: How to automate test execution and consider non-determinism?



Scenario-based Automatic Testing of ML with the Human in the Loop 7

– RQ2.2: How to measure the quality of obtained results, i.e., determine if
the test is passed or not?

The following section provides answers to these questions and presents a so-
lution for designing, implementing, and executing test cases for assessing OCE.
There are other approaches that can address these questions: for example, meta-
morphic testing [5] focuses on verifying model behavior in the absence of an
oracle and targets question RQ2.2. Furthermore, other properties are required
for an interactive online learning program, related to human factors and user
experience (usability, cognitive load, engagement, etc.), but these questions are
beyond the scope of this paper.

4 A Scenario-based Approach to Evaluate OCE

OCE is a program that learns online with the user in the loop. To test it, we must
evaluate the different models it builds and it updates from one cycle to the next:
are these models capable of proposing relevant applications for the user, i.e., in
line with their preferences and situation? Since a model cannot be compared to
an expected model and is not suitable for code analysis, it must be executed
to verify the quality of its outputs, i.e., the ambient applications it proposes.
It is important to note that the aim is not to evaluate the raw quality of these
applications (functionality, performance, security, etc.), but rather whether they
meet the user’s expectations and habits, precisely their compliance with what
the user has previously expressed.

This section first examines what test cases are and their structure. It then
presents two tools, Maker and Runner, which enable the implementation and
automatic execution of these test cases coupled with OCE.

4.1 Test Scenario

In an iterative context such as online learning, designing a test case requires
defining a sequence of interactions between the learning program and its learn-
ing environment (the ambient environment and the user in our case). Online
learning requires a certain number of interactions to learn and derive a model.
To verify that the model behaves as expected, additional interactions are neces-
sary. We call this sequence of interactions dedicated to learning and evaluation
a “test scenario” 2. The interactions related to learning and evaluation can be
intertwined. However, in this paper and for the sake of simplicity, we consider
only one learning phase and one evaluation phase executed sequentially.

The learning phase involves a sequence of cycles where, for each cycle,
OCE makes a proposition, the user provides feedback, and then OCE learns
2 In the field of software testing, the term “test scenario” usually refers to the or-

ganization and planning of the testing process within a development project. Our
definition of the term test scenario is different: it is a usage scenario intended to be
tested, thus constituting a test case.



8 Author information scrubbed for double-blind reviewing

from the feedback (as depicted in Figure 2). To define the learning phase, each
cycle must be specified by: (i) the list of software components populating the
ambient environment (which changes from cycle to cycle) along with their ser-
vices for assembly, and (ii) to avoid the tester having to constantly interact with
OCE during tests, which would be too tedious and costly, the “ideal assembly”
specifies the outcome (output) that the user would expect in this case. Based
on the assembly of components proposed by OCE and the ideal assembly, OCE
generates feedback and learns, just as it does in normal operation. At the end of
this phase, OCE has built a model adapted to the environmental configurations
(including user feedback). The model is then ready for evaluation.

To simplify the tests and the analysis of the results, the evaluation phase
can be reduced to a single cycle, but this is not mandatory. An evaluation cycle
is defined by: (i) the ambient environment as in the learning phase and (ii)
the expected output called the “expected assembly”. Thus, by providing the
expected output, the test designer acts as an oracle. Distance measures between
the output proposed by OCE and the expected output are calculated to evaluate
the relevance (correctness in the sense of Zhang et al. [27]) of OCE’s decision.

This scenario-based approach addresses the research question RQ1.1. In this
way, it is possible to define and test in different ambient environments and their
dynamics, as well as different user behaviors. It should be noted that issues
related to identifying representative test scenarios and involving the human (the
user or their representative) in their definition are beyond the scope of this paper.

Fig. 3. Learning cycles of the example scenario

Example To illustrate what a scenario is, let’s take an example, adapted from
[26] and simplified for clarity. Mary is at work. In her ambient environment,
there are a software component Desk that provides a room booking service
called Order and three components, Text, Voice, and Tactile, which allow the
user to make a booking request (with different interaction modes) and require



Scenario-based Automatic Testing of ML with the Human in the Loop 9

the Order service. Through the Order service, these three components can be
assembled with Desk. Thus, three applications are possible (Text-Desk, Voice-
Desk, Tactile-Desk), enabling Mary to book a meeting room. As testers, we
want to verify that if Mary expresses a preference for Voice-Desk, then when
a similar situation arises, OCE will again propose Voice-Desk.

Let’s imagine a simple scenario with three cycles where Voice disappears
and then reappears. Cycles 0 and 1 (Figure 3) define the learning phase. Cycle
0 is defined by the list of 4 components and the ideal assembly Voice-Desk
(Mary’s preference). For cycle 1, the components are Desk, Text, and Tactile.
The ideal assembly in this case is Text-Desk.

Fig. 4. Evaluation cycle of the example scenario

In the evaluation phase, cycle 2 (Figure 4) is defined by the list composed of
Desk, Text, and Voice, and the expected assembly is Voice-Desk. Next, we
present two tools that support the definition and execution of such a scenario.

4.2 Tools for Testing OCE

The tools we have developed to test the learning program OCE are presented
in this section. The source code is available3, along with a short video4 that
complements this section and demonstrates their usage in the scenario described
above.

Maker This is an interactive tool for implementing scenarios that addresses re-
search question RQ1.2. For a given cycle, the tester can reuse or define fictitious
components (Figure 5, left panel), drag and drop them into a panel defining the
environment, and link their services to define the ideal or expected assembly
(figure 5, right panel). Additional features, such as the ability to duplicate a
cycle, reduce the tester’s workload. From a sequence of cycles, Maker generates
a JSON file that implements the scenario.

3 https://www.irit.fr/OppoCompo/resources/
4 https://www.irit.fr/OppoCompo/makerrunnerusecase2024/

https://www.irit.fr/OppoCompo/resources/
https://www.irit.fr/OppoCompo/makerrunnerusecase2024/


10 Author information scrubbed for double-blind reviewing

Fig. 5. Maker’s interface for scenario implementation

Runner This is a Java application that, coupled with OCE, allows the execution
of scenarios in JSON format, such as those generated by Maker. To mitigate the
impact of the non-deterministic nature of machine learning, a scenario can be re-
peated multiple times, and average values of the measured results are calculated.
Several parameters need to be defined, such as learning hyperparameters (e.g.,
exploration rate of reinforcement learning), the version of OCE to test, and the
number of repetitions. Thus, Runner addresses research question RQ2.1. Once
the parameter values are set, it operates coupled with OCE without further
intervention from the tester.

To answer the research question RQ2.2 and assess the relevance of the ap-
plications proposed during the evaluation cycles, Runner compares the assembly
proposed by OCE with the expected assembly by calculating a Jaccard sim-
ilarity index5. It provides an average index across all evaluation cycles of a
scenario. This measure indicates whether the constructed models have made
relevant propositions based on what OCE learned, i.e., based on the user’s pref-
erences in different ambient environments.

Architecture and Implementation Maker and Runner have been imple-
mented and integrated into the OCE system, which architecture can be repre-
sented in the form of a UML component diagram too [17]. Figure 6 represents
5 https://en.wikipedia.org/wiki/Jaccard_index

https://en.wikipedia.org/wiki/Jaccard_index


Scenario-based Automatic Testing of ML with the Human in the Loop 11

the configuration of the OCE system in production. When the ambient environ-
ment changes, OCE receives from Ambient Env. the list of components that
are currently present (service ProcessOneEnv). OCE builds an assembly and
proposes it to the user via the User Interface, and the user provides feedback
in the form of an assembly (service Feedback).

Fig. 6. Architectural view of OCE in production configuration

Fig. 7. Architectural view of OCE in testing configuration

Figure 7 shows how Maker and Runner have been integrated into OCE ar-
chitecture. The modularity of this architecture allows replacing the ambient en-
vironment and the user interface with Runner to perform tests implemented
with Maker. In the testing configuration, Runner executes a scenario taken
from the Repository of scenarios (service ReadScenario). The directory is pop-
ulated by scenarios implemented with Maker (service SaveScenario). For each
cycle of the scenario, Runner requests OCE to propose an assembly (service
ProcessOneEnv). Following the proposition, Runner provides OCE with the
ideal assembly (service Feedback), which OCE treats as user feedback. In the
case of evaluation cycles, Runner computes the distance between the proposed
assembly and the ideal one defined in the scenario.



12 Author information scrubbed for double-blind reviewing

Experimentation Maker and Runner were used during an initial test campaign
of OCE’s behavior. We defined around ten scenarios aimed at testing basic cases,
such as learning a preferred component, learning to avoid a component, or deal
with sensitivity to novelty (unknown components that appear in the ambient
environment). For each case, we varied the dynamics of the environment. Runner
was tested with scenarios created using Maker. No failures were observed with
these two tools. They simplified the tester’s work and accelerated the campaign
by avoiding the need to manually run OCE hundreds of times. They enabled
triggering changes in the environment to simulate its dynamics and provided a
relevance measure without laborious analysis of OCE’s knowledge.

These tests helped uncover a few flaws in OCE’s decision-making process.
They also enabled an initial evaluation of the learning process, refinement of
parameter settings, and correction of defects in the handling of the user feedback.

5 Related Work

This section positions our approach in relation to other works using the concept
of scenario and a few tools for developing and experimenting ML-based solutions.

5.1 Scenarios for Testing

C. Kaner [4] defines a scenario as a story of a person trying to accomplish some-
thing with the tested product. Hussain et al. [11] propose a similar definition,
but not directly tied to testing: a scenario is an informal description of a specific
use of software, or of a part of it, by a user. Here, scenarios are defined from user
needs (use cases) and are used to derive test cases. According to these definitions,
a scenario is described as a sequence of interactions between the software and a
user. This is precisely how we use scenarios to test OCE (cf. Section 4). Indeed,
a scenario describes a sequence of ambient environments (where an environment
is represented by a list of software components) as well as ideal assemblies that
model interactions between the user and OCE.

In the domain of autonomous vehicles, the concept of scenario is used to
evaluate vehicle behaviors based on machine learning. For instance, Ulbrich et
al. [24] describe a scenario as a temporal sequence of scenes, where each scene
represents a configuration of the physical environment in which one or more au-
tonomous vehicles operate. A scenario details the scenes, the transitions between
different scenes, and the evaluation criteria. In this context, a scenario specifies
sequences of physical environments rather than user-software interactions.

The scenario-based approach enables the comprehensive description of a use
case, thereby facilitating end-to-end testing (“system” level testing). This makes
it particularly suitable for evaluating machine learning-based software due to its
“black box” nature. We have tailored this approach for “online” learning by inter-
leaving learning and evaluation phases within a scenario. Furthermore, we have
adapted it for “interactive” learning by allowing the expression of interactions
with the user within a scenario.



Scenario-based Automatic Testing of ML with the Human in the Loop 13

5.2 Some Tools

Tools like Gymnasium [3], DotRL [18], and Cogment [1] are designed for the de-
velopment and experimentation of reinforcement learning solutions. Evaluation
of a solution typically involves comparing it against other algorithms in prede-
fined environments. However, these tools do not include the notion of scenarios.
Additionally, unlike Runner, they do not provide measures to simplify the anal-
ysis of test results. They often supply raw data, leaving their interpretation to
the tester.

Cogment is the only platform that integrates the human in the interaction
loop, focusing on interactive learning. This platform facilitates the development
of solutions where humans can intervene to accelerate learning. However, its
current focus is on solution deployment rather than providing testing facilities.

6 Synthesis and Perspectives

To meet the evaluation needs of an online learning solution with human inter-
action, we analyzed the testing challenges in the context of machine learning,
focusing on testing interactive online learning. To address our research questions
regarding design, implementation, and execution of tests of a learning program
interacting with humans, we proposed an approach based on scenarios that mixes
learning and evaluation phases. To implement this approach and apply it to the
Opportunistic Composition Engine (OCE), we introduced two tools: Maker and
Runner. These tools are operational but currently evolving. Several new features
are planned, such as allowing testers to define their own quality metrics (e.g.,
precision or recall) or providing the ability to monitor scenario execution cycle
by cycle.

Although defined to meet the evaluation needs of OCE, we believe that the
principles we propose can be helpful for testing other online learning solutions
with the human in the loop.

Our proposition still leaves several questions regarding the involvement of
the human user in the testing process and the management of a test campaign.
Thanks to the scenario-based approach, the presence of the user is no longer
necessary during test execution. However, the contribution of users (or their
representatives, experts of the domain) is still necessary in the design of scenar-
ios. On the other hand, to cover the scope of application of the learning program
effectively, it is necessary to have a potentially large number of test scenarios.
Typically, this number is too large for scenarios to be designed one by one “by
hand”. The issue then revolves around automatically generating test scenarios:
how to automatically generate sequences of environments with their dynamics?
How to automatically integrate the interaction with the user and their feedback?
To scale up the number of scenarios, it is necessary to replace the user with an
“automaton” that models a typical behavior and provides ideal assemblies. Ad-
ditionally, how to manage the combinatorial explosion and select test scenarios
(knowing that it is not possible to test a program exhaustively)?



14 Author information scrubbed for double-blind reviewing

Our aim is to mix models of ambient environments and user behaviors models
to derive test scenarios, similar to those produced by Maker, in order to execute
them using Runner.

References

1. AI Redefined, Gottipati, S.K., Kurandwad, S., Mars, C., Szriftgiser, G., Chabot, F.:
Cogment: Open Source Framework For Distributed Multi-actor Training, Deploy-
ment & Operations. CoRR abs/2106.11345 (2021), https://arxiv.org/abs/
2106.11345

2. Ammann, P., Offutt, J.: Introduction to software testing. Cambridge University
Press (2016)

3. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI Gym. CoRR (2016), https://arxiv.org/abs/1606.01540

4. Cem Kaner, J.: An introduction to scenario testing. Florida Institute of Technology,
Melbourne pp. 1–13 (2013)

5. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for
generating next test cases. arXiv preprint arXiv:2002.12543 (2020)

6. Dunne, R., Morris, T., Harper, S.: A survey of ambient intelligence. ACM Com-
puting Surveys (CSUR) 54(4), 1–27 (2021)

7. Fails, J.A., Olsen Jr, D.R.: Interactive machine learning. In: Proceedings of the 8th
Int. Conf. on Intelligent User Interfaces. pp. 39–45 (2003)

8. Giray, G.: A software engineering perspective on engineering machine learning
systems: State of the art and challenges. J. of Systems and Software 180, 111031
(2021)

9. Graham, D., Black, R., van Veenendaal, E.: Foundations of Software Testing:
ISTQB Certification. Cengage, 4 edn. (2020)

10. Hawkins, D.M.: The problem of overfitting. Journal of chemical information and
computer sciences 44(1), 1–12 (2004)

11. Hussain, A., Nadeem, A., Ikram, M.T.: Review on formalizing use cases and scenar-
ios: Scenario based testing. In: 2015 Int. Conf. on Emerging Technologies (ICET).
pp. 1–6. IEEE (2015)

12. Khomh, F., Adams, B., Cheng, J., Fokaefs, M., Antoniol, G.: Software engineering
for machine-learning applications: The road ahead. IEEE Software 35(5), 81–84
(2018)

13. Marijan, D., Gotlieb, A., Ahuja, M.K.: Challenges of Testing Machine Learning
Based Systems. In: Proc. of the 1st IEEE Artificial Intelligence Testing Conf. IEEE,
San Francisco, CA, USA (2019)

14. Martínez-Fernández, S., Bogner, J., Franch, X., Oriol, M., Siebert, J., Trendowicz,
A., Vollmer, A.M., Wagner, S.: Software engineering for AI-based systems: a survey.
ACM Trans. on Software Engineering and Methodology (TOSEM) 31(2), 1–59
(2022)

15. Murphy, C., Kaiser, G.E., Arias, M.: An approach to software testing of machine
learning applications. In: Int. Conf. on Software Engineering and Knowledge En-
gineering (2007)

16. Nakajima, S.: Generalized Oracle for Testing Machine Learning Computer Pro-
grams. In: Software Engineering and Formal Methods - SEFM 2017. LNCS, vol.
10729, pp. 174–179. Springer (2017)

https://arxiv.org/abs/2106.11345
https://arxiv.org/abs/2106.11345
https://arxiv.org/abs/1606.01540


Scenario-based Automatic Testing of ML with the Human in the Loop 15

17. OMG: Unified Modeling Language, chap. 11.6 (2017), https://www.omg.org/
spec/UML/2.5.1/PDF

18. Papis, B., Wawrzyński, P.: dotRL: A platform for rapid Reinforcement Learning
methods development and validation. In: 2013 Fed. Conf. on Computer Science
and Information Systems (FEDCSIS). pp. 129–136. IEEE (2013)

19. Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N., Weiss, M., Tonella, P.:
Testing machine learning based systems: a systematic mapping. Empirical Software
Engineering 25, 5193–5254 (2020)

20. Russell, S.J., Norvig, P.: Artificial intelligence: A Modern Approach. Pearson Ed-
ucation, Inc. (2010)

21. Sommerville, I.: Component-based software engineering. In: Software Engineering,
pp. 464–489. Pearson Education, 10th edn. (2016)

22. Sugali, K.: Software testing: Issues and challenges of artificial intelligence & ma-
chine learning. Int. J. of Artificial Intelligence & Applications 12(1), 101–112 (2021)

23. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, 2nd
edn. (2018)

24. Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and sub-
stantiating the terms scene, situation, and scenario for automated driving. In: IEEE
18th Int. Conf. on intelligent transportation systems. pp. 982–988. IEEE (2015)

25. Weyuker, E.J.: On testing non-testable programs. The Computer Journal 25(4),
465–470 (1982)

26. Younes, W., Trouilhet, S., Adreit, F., Arcangeli, J.P.: Agent-mediated applica-
tion emergence through reinforcement learning from user feedback. In: 29th IEEE
Int. Conf. on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE). pp. 3–8. IEEE Press (2020)

27. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: Survey, land-
scapes and horizons. IEEE Trans. on Software Engineering 48(1), 1–36 (2020)

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

	Scenario-based Automatic Testing of a Machine Learning Solution with the Human in the Loop

