
Trustworthy Clustering: A Interpretable
Clustering Framework with Hierarchical Oblique

Decision Boundaries

Author information scrubbed for double-blind reviewing

institute {email}

Abstract. The field of Explainable AI (XAI) has largely focused on
interpretability in classification and regression, while cluster analysis, a
vital unsupervised machine learning technique, has been relatively ne-
glected. As an exploratory technique, the interpretability and explain-
ability of modern clustering models present significant challenges. This
lack of transparency impedes trust and comprehension of the models’
decision-making processes. In this paper, we address this gap by enhanc-
ing the interpretability of clustering results using a hierarchical structure
representation. Our approach employs oblique decision trees, supported
by SHAP (SHapley Additive exPlanations) values to analyze influen-
tial features and identify separation hyperplanes for constructing the
trees. Unlike traditional axis-aligned trees, oblique decision trees provide
a more accurate interpretation of high-dimensional data, maintaining a
clear and interpretable structure. This method not only improves trans-
parency but also fosters trust in hybrid decision-making systems, offering
reliable and comprehensible explanations for clustering outcomes.

Keywords: Explainable AI · Trustworthy machine learning · Clustering
· Boundary detection · Oblique decision trees.

1 Introduction

Clustering, a fundamental unsupervised machine learning technique, plays a cru-
cial role in various domains such as marketing, healthcare, and bioinformatics.
Despite its widespread applications, the interpretability and explainability of
modern clustering models remain a significant challenge, particularly in the con-
text of trustworthy decision-making systems. Traditional clustering algorithms,
while effective in grouping similar data points, often operate as "black boxes,"
lacking transparency in their decision-making processes. This opacity hinders
trust in clustering outcomes, especially in high-stakes domains where explain-
ability is paramount. While Explainable Artificial Intelligence (XAI) has made
significant progress in developing interpretable models for classification and re-
gression tasks, cluster analysis has received comparatively less attention.

We believe that addressing this interpretability gap in clustering is crucial for
advancing trustworthy hybrid decision-making systems. Our research proposes
a novel approach to elucidate cluster boundaries using a hierarchical structure
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representation and oblique decision trees. By leveraging SHAP (SHapley Addi-
tive exPlanations) values, we analyze influential features and incorporate them
into the construction of oblique trees, offering a more accurate interpretation of
high-dimensional data compared to traditional methods.

This paper aims to demonstrate how our proposed method enhances the
interpretability of clustering models, contributing to the development of more
transparent and reliable decision-making systems. Our work has significant im-
plications for improving the adoption of clustering techniques in domains where
explainable AI is essential.

2 Background

2.1 Cluster analysis and boundary detection

Given a dataset X = {x1, x2, ..., xn}, where each data point xi is a d-dimensional
vector representing the features of an observation. The goal is to partition this
dataset into K clusters, C = {C1, C2, ..., CK}, such that the clustering cost
J such as the within-cluster sum of squares (WCSS) is minimized (shown as
equation 1.).

J(C, µ) =

K∑
k=1

∑
x∈Ck

∥x− µk∥2 (1)

where K is the number of clusters, Ck is the set of data points in the k-th clus-
ter. µk denotes the centroid of the k-th cluster, calculated as (1/|Ck|)

∑
x∈Ck

x
for K-Means algorithm.

To explicitly identify a cluster, one of the most important aspects of the anal-
ysis is to find its boundary, particularly when dealing with complex or irregularly
shaped clusters. After obtaining the cluster assignments and centroids from the
K-Means algorithm, the boundaries between clusters can be estimated based
on certain similarity measures such as pairwise distances or underlying density
functions. For example, distance-based boundary detection methods rely on the
idea that points located near the boundaries between clusters should have similar
distances to two or more cluster centroids [5]. These methods aim to identify the
boundary regions by finding the set of points that are approximately equidistant
from multiple centroids. Specifically, for each data point x, find the closest and
second-closest centroids, denoted as µx

c1 and µx
c2, respectively. If the difference

between the distances to these two centroids is less than a predefined threshold δ,
then x is considered a potential boundary point: |dist(x, µx

c1)− dist(x, µx
c1)| < δ.

The threshold δ determines the width of the boundary region. A smaller value
of δ will result in a narrower boundary region, while a larger value will produce
a broader boundary region.

2.2 Oblique decision trees

Traditional decision trees, such as CART (Classification and Regression Trees)
and C4.5, use axis-parallel splits, which can be limiting for data with complex re-
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lationships between features, potentially resulting in suboptimal splits. Oblique
decision trees, on the other hand, are a variant of traditional axis-parallel deci-
sion trees. Their splits consist of hyperplanes that are not constrained to being
parallel to the feature axes. This allows for more flexible and accurate decision
boundaries, especially in scenarios where class determination relies on a combi-
nation of features simultaneously.

To build such decision trees that utilize oblique splits, Sreerama et al. intro-
duced the OC1 algorithm [3][4]. Initially, at each internal node of the decision
tree, the OC1 algorithm randomly generates a set of candidate oblique split-
ting hyperplanes. For each candidate oblique hyperplane, the system evaluates
a splitting criterion (e.g., Gini impurity) to measure the quality of the split. The
hyperplane that maximizes the splitting criterion is chosen as the best oblique
split for that node. Particularly, OC1 primarily relies on deterministic hill climb-
ing to search for appropriate oblique splits. It iteratively adjusts the coefficients
of the linear function, essentially tilting and shifting the hyperplane in the data
space so that the potential plane meets the chosen splitting criterion during
evaluation. Once the best oblique split is determined, the instances are parti-
tioned according to that split, and the process is recursively applied to the child
nodes until a stopping criterion is met. Additionally, OC1 also applies a prun-
ing technique to remove subtrees that do not significantly improve accuracy for
preventing overfitting.

3 Arguments

The field of Explainable AI (XAI) has made significant strides in developing
interpretable models for supervised learning tasks, but the domain of cluster-
ing, a crucial unsupervised learning technique, remains underexplored in terms
of interpretability. This gap is particularly problematic given the widespread
application of clustering across various domains and its importance in decision-
making processes. Our research addresses three primary challenges in explainable
clustering:

1. The difficulty in adapting supervised interpretability methods to unsu-
pervised clustering tasks. While many existing explainability methods provide
reliable and theoretically robust explanations, they are primarily designed for
supervised learning tasks. Adapting these techniques or developing new ones
specifically for unsupervised clustering tasks presents additional challenges.

2. The complexity of interpreting high-dimensional feature spaces commonly
used in clustering algorithms. Many machine learning approaches advocate map-
ping original features to higher-dimensional spaces to uncover latent information,
resulting in input instances being represented as high-dimensional vectors. Align-
ing these hidden characteristics with real-world features remains challenging.
Additionally, the complexity of feature interactions increases, making it more
difficult to provide human-understandable explanations.

3. The sensitivity of cluster boundaries to hyperparameters and initialization
conditions, which complicates consistent interpretation. As an exploratory tech-
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nique, the explanations are inherently influenced by the clustering process. Small
changes in hyperparameter settings or randomized initialization can significantly
alter the resulting cluster boundaries, leading to notably different cluster assign-
ments. Consequently, this sensitivity can undermine trust in the explanations
provided, making it difficult for users to rely on them for informed decision-
making.

Addressing these challenges is crucial for advancing trustworthy hybrid decision-
making systems. To this end, we propose a novel approach that combines the
strengths of oblique decision trees with detected cluster boundary integration.
This method offers several key advantages: First, it provides a more accurate in-
terpretation of cluster boundaries compared to traditional axis-aligned decision
trees. Second, it maintains an interpretable structure in the form of a top-down
binary tree, making it accessible for human understanding. Finally, it effectively
handles high-dimensional data by identifying critical features that significantly
impact the clustering process. By developing this method, we contribute to the
broader field of XAI and unsupervised learning, offering a framework for un-
derstanding complex, high-dimensional clustering outcomes in a manner that is
both accurate and accessible to human interpretation.

4 Proposed Method

Our proposed method introduces an integrated framework that leverages the
strengths of multiple techniques to enhance the interpretability of clustering
models while maintaining their performance. The framework consists of three
main stages:

Feature Filtering with Contribution Analysis: Gan et al. proposed us-
ing an adjusted SHAP approach to capture feature contributions in clustering
[13]. We will apply this method to identify and select the most contributive
features for each cluster. This step helps reduce dimensionality and focuses the
interpretation on the most relevant aspects of the data. By utilizing the adjusted
SHAP approach, we benefit from its game-theoretic framework for feature im-
portance, which accounts for feature interactions and provides a robust measure
of feature impact on cluster assignments.

Cluster Boundary Collection: Building upon the feature selection per-
formed through SHAP analysis, our framework employs advanced boundary de-
tection techniques ([6], [10], [11]) to identify multiple linear decision boundaries
for each cluster. This crucial step aims to capture the complex shapes of cluster
boundaries in high-dimensional spaces, providing a more accurate representation
of the clustering structure while maintaining interpretability. By focusing on the
most contributive features, we address the challenges of high-dimensional com-
plexity and the interpretability-accuracy trade-off inherent in clustering tasks.

Our approach utilizes a combination of methods, including Support Vector
Machines (SVM) with linear kernels, adaptive gradient-based approaches, and
density-based boundary detection. We implement a one-vs-rest strategy with
SVMs, leveraging their margins to assess boundary confidence. Additionally, we
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employ iterative gradient-based methods to fine-tune boundary positions, ensur-
ing they accurately reflect local data distributions around cluster interfaces. For
clusters with non-uniform density, we incorporate density estimation techniques
to identify potential boundaries in regions of rapid density change.

Oblique Decision Tree Construction: The construction of an oblique de-
cision tree serves as the final and crucial stage in our framework for interpretable
clustering. This stage translates the collected linear cluster boundaries into a
hierarchical, human-readable structure that effectively captures the essence of
the clustering model’s decision-making process. Unlike traditional axis-aligned
decision trees, our oblique trees can create splits using linear combinations of
multiple features, allowing for a more accurate representation of non-orthogonal
decision boundaries identified in the previous stages.

The construction process integrates the linear decision boundaries collected
earlier as potential split candidates for tree nodes. We employ a top-down ap-
proach, where each level of the tree represents a more fine-grained partitioning
of the data space. At each node, we select the most discriminative boundary or
combination of boundaries to split the data, maximizing cluster separation. This
process is optimized through techniques such as linear discriminant analysis or
logistic regression to determine the best oblique splits.

To maintain interpretability, we implement pruning techniques to prevent
overfitting and reduce tree complexity, balancing the trade-off between tree depth
and accuracy. We also incorporate the feature importance information derived
from the SHAP analysis, ensuring that splits near the root of the tree prioritize
the most influential features. This integration of SHAP values enhances the tree’s
ability to provide meaningful explanations of cluster assignments.

The resulting oblique decision tree offers several advantages for cluster inter-
pretation. It provides a hierarchical view of the cluster structure and allows for
accurate capture of complex decision boundaries. Moreover, the trees naturally
lend themselves to generating rule-based explanations for cluster assignments.

5 Conclusion

This paper presents a novel framework for enhancing the interpretability of clus-
tering models, addressing a critical gap in the field of Explainable AI (XAI) for
unsupervised learning tasks. Our framework addresses several key challenges in
the field of explainable clustering. It mitigates the difficulty of adapting super-
vised interpretability methods to unsupervised tasks, handles the complexity of
high-dimensional feature spaces, and provides consistent interpretations despite
the sensitivity of clustering algorithms to initialization and hyperparameters. By
doing so, it contributes significantly to the development of trustworthy hybrid
decision-making systems, offering transparency, consistency, and adaptability
across various clustering scenarios.

The primary contributions of our work are threefold. First, we involve the
adapting SHAP approach to identify and prioritize the most influential features
in clustering outcomes. This adaptation provides a robust foundation for feature
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selection in an unsupervised context. Second, our boundary detection approach,
which combines multiple techniques including SVMs and density-based meth-
ods, offers a sufficient representation of cluster boundaries that captures the
complexity of real-world data distributions. Finally, the use of oblique decision
trees as an interpretable model provides a flexible and accurate representation of
cluster structures, bridging the gap between sophisticated clustering algorithms
and human-understandable explanations.

Looking forward, this work opens up several avenues for future research.
These include the exploration of more advanced oblique decision tree algorithms,
to further enhance the accuracy and interpretability of our model. Then we may
explore the integration of interactive visualization techniques to enhance user
understanding instead of rule-based explanations. Next, we plan to conduct com-
prehensive comparative studies, evaluating our framework against a diverse array
of interpretable clustering approaches across various dimensions, including ro-
bustness, and domain-specific applicability. Furthermore, a critical aspect of our
future work involves the formulation of novel metrics for quantifying the quality
of interpretable methods, addressing the current gap in standardized evaluation
criteria for explainable clustering. Our consistent research aim is not only to
refine our current framework but also to contribute to the broader advancement
of interpretable and trustworthy machine learning in real-world contexts.
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