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Abstract. Among the various forms of post-hoc explanations for black
box models, counterfactuals are among the most appealing for their in-
tuitiveness and effectiveness. Long-standing issues in the field of coun-
terfactual explanations regard the efficiency of the counterfactual search
process, the likelihood of generated instances or their interpretability
and in some cases even the validity of the explanations. In this work we
present a generative framework capable of addressing all these issues.
Our method leverages disentangled variational autoencoders to achieve
two complementary objectives, namely generating high-quality instances
and encouraging label disentanglement to gain full control over the de-
cision boundary. This allows the model to sidestep expensive gradient
based optimization to generate counterfactuals, which are instead di-
rectly generated according to the adversarial distribution. Preliminary
results assess the effectiveness of the training procedure, the efficiency
of the explanatory pipeline and the quality and interpretability of the
explanations.

Keywords: Counterfactual Explanations · Generative XAI · Disentan-
glement

1 Introduction

Explainable AI is a field of research that arises from the need of transparency and
to improve understanding of what are known as black-box models [13]. With the
goal of explaining the inner workings of deep-learning models, researchers have
provided users with many different techniques of post-hoc explanations. Among
these, counterfactuals consist of instances describing the necessary changes in
input features that alter the prediction to a predefined output [23], and are
especially appealing for a human decision maker [9]. Counterfactual explana-
tions should carry the following properties: i) validity – the model prediction on
the counterfactual instance needs to follow a predetermined class; ii) sparsity

– the perturbation applied to the original instance should be sparse; iii) inter-

pretability – the explanatory instance should be interpretable, iv) likeliness – the
explanation should be representative of the adversarial class distribution.
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Despite the appeal of counterfactual explanations, existing approaches have
struggled in satisfying the desired properties, especially likeliness [26, 4], action-
ability [12, 5] or sparsity [11] of the counterfactual being generated. Efficiency in
generation is another major problem of existing solutions [7, 32, 17]. Simultane-
ously, there has been a noticeable growth in popularity of generative models in
XAI with the aim to increase the quality of generated explanations [30]. Inspired
by this, we propose a generative framework for counterfactual explanations that
satisfies the desired properties while being computationally efficient, so as to al-
low real-time counterfactual generation. In a nutshell, our framework leverages
a disentangled variational autoencoder to learn class-specific latent representa-
tions, which in turn allows the generation of counterfactuals by simply trading-off
the likelihood of the explanation according to the adversarial distribution with
its distance from the instance to explain. Likeliness of the output is assured by
the underlying generative model, validity is guaranteed by the explicit model-
ing of the decision boundary between classes, while sparsity is encouraged by
combining label-relevant latent dimensions with label-irrelevant ones which are
shared among classes. Finally, efficiency is achieved by directly generating coun-
terfactuals according to the adversarial distribution, thus sidestepping expensive
gradient based optimization procedures. A preliminary experimental evaluation
confirms the effectiveness of the proposed solution, which generates insightful, in-
terpretable and valid counterfactuals in real-time for the popular fashionMNIST
dataset.

2 Related Work

Contrastive explanations Contrastive explanations aim at justifying a choice
by rejecting the other viable options. Throughout the years various techniques
have been proposed to achieve this [27, 34, 15, 22] but the most popular option
is counterfactuals. Since the use of Deep Generative Models, such as Genera-
tive Adversarial Networks (GANs) [10] and VAEs [19, 28], has been proposed to
explain models choices, the most common procedure is to gradually twist the
input in order to retrieve the most meaningful interpretable changes like in [8,
16, 21, 24, 29, 31]. Such operations can be computationally expensive and require
complex gradient-based optimizations like for the case of [4], where concepts
extracted from a disentangled VAE are central to the explanatory process. The
proposal of [25] also leverages a disentangled VAE, but a classifier parameter-
ized by a neural network is directly applied to its latent space. Their approach
is effective but restricted to problems with a limited number of dimensions. In
this work, we show how to overcome these limitations by directly exploiting the
data distribution learned by the generative model.

Generative AI and latent disentanglement Disentanglement plays a central role
in the framework we propose, in terms of both learning disentangled latent rep-
resentations and label disentanglement in the latent space. Disentangled feature
representations, or high level generative factors in disjoint subsets of the fea-
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ture dimensions, carry many desirable properties such as intervention and in-
terpretability [20, 1]. Due to the inherent trade-off between reconstruction qual-
ity and disentanglement [14], existing approaches [20, 2, 18] incorporate addi-
tional regularization components or derive alternative ELBO formulations. On
a different note, [36] define Variation Predictability, a constraint encouraging
disentanglement, which is directly optimized combining VAEs and GANs. Not
surprisingly a body of works exploiting classification losses to encourage a disen-
tangled latent representations already exists [3, 6, 35]. However, the first two [3,
6] are conceived for classification and cannot generate new instances, while the
last [35] can perform generation but, in contrast with our approach, does not
explicitly learn to classify the latent representations it reconstructs and that our
method uses for the explanations.

3 Method Overview

In this section we present an overview of the methodology we propose. Our
framework is centered around a disentangled VAE equipped with a label-relevant
label-irrelevant approach to simultaneously learn a generative process and a
classification task. This allows class distributions to guide both both the label
predictions and their explanatory process. The novel technique for counterfactual
generation we present operates under the assumption that data follows a mixture
of Gaussian distributions, and it consists of a two step process: i) identification
of a set of candidate counterfactuals according to a predefined set of rules; ii)
extraction of the expected value of the set under the adversarial distribution
as the generated counterfactual. This framework aims at capitalizing on the
following advantages:

– interpretability: shaping the distribution of the data in the latent space in-
creases the model transparency by controlling the complexity of the decision
boundary;

– Validity: the assumptions of the predictive model are coherent with the ones
of the chosen explanatory technique, allowing full control over the predictive
mechanism;

– Likeliness: learning the latent-space data distribution allows for fast, effi-
cient and high quality counterfactuals generation with the methodology we
propose.
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Fig. 1: Overall pipeline of the proposed counterfactual generation framework.

The full interactive explanatory pipeline, shown in Figure 1, can be divided in
three main steps: an encoding step, a counterfactual search step and a decoding
step.

The enconding step consists in extracting the label-relevant and label-irrelevant
encodings of the input instance. The first set of latents is used for classification
and the output of the model is presented to the user. The second set of latents is
instead momentarily stored. This step finally concludes with the user (possibly)
formulating a counterfactual query.

The counterfactual search receives the user-defined counterfactual class as
input together with the label-relevant latents, and finds a transformation of the
latent input such that the model prediction on this novel instance corresponds
to the counterfactual class. This step concludes returning the latent vector that
optimizes the likelihood of the explanation and the distance between the coun-
terfactual and the original instance.

The final step takes as input the newly found vector that according to the
model belongs to the counterfactual class and the label-irrelevant latent rep-
resentation of the instance to explain. These are concatenated and fed to the
decoder to generate a counterfactual in the input space which will be returned
as final explanation.

4 The Generative Model

First we will introduce the variational generative model learning class-specific
latent distributions. Our approach builds on the label-relevant/irrelevant VAE
of [35] and, as mentioned in the related work, we propose a method to extend
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with equivalent performance the learned classier to the latent representations
used for reconstruction and exploited by our explanatory technique. We stick
to Gaussian classification, instead of neural-network parametrization [25], to
exploit the properties of such framework when generating counterfactuals. For
these reasons, we derive an alternative ELBO formulation that, when minimized
together with the classification loss we propose, allows to efficiently shape the
latent space as a mixture of label-specific Gaussians, obtaining good classification
performance while encouraging latent regularization. The architecture of the
proposed model is shown in Figure 2. In the following we provide a detailed
description of its elements.

Fig. 2: The model architecture. First inputs are encoded with two separate mod-
ules to extract label-relevant (zs) and label-irrelevant (zu) latent dimensions. zs
are then used to compute parameters of a mixture of Gaussians. Such parameters
should allow label disentanglement which is encouraged by Ls

cls. On the other
hand for zu this should not be possible and Lu

cls discourages it penalizing pre-
dicted class probabilities deviating from a uniform distribution. Finally, through
reparametrization-trick, the latent z to reconstruct is sampled and fed to the
decoder. Its output is compared with the original instance and Lrec encourages
fidelity in the reconstructions.

4.1 Background

A VAE is a type of parametric model following an encoding q�(z|x) and decoding
p✓(x|z) mechanism trained with the goal of maximizing likelihood of evidence.
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Such quantity is maximized through its lower bound (ELBO):

log p(x) � Eq�(z|x)[log p✓(x|z)]�Dkl(q�(z|x) k p(z)) (1)

The encoder is parameterized by � and the decoder by ✓. According to such
formulation, Eq�(z|x)[log p✓(x|z)] is the reconstruction loss, which encourages en-
coded inputs to be decoded with fidelity, and Dkl(q�(z|x) k p(z)) is the Kullback-
Leibler divergence between the output of the recognition model q�(z|x) and the
prior latent distribution p(z). The former is extracted from the encoder which
returns mean µ�(x) and variance ⌃�(x) parameters for every input x, while the
latter is typically modelled as a standard Gaussian.

The ELBO objective can be extended to incorporating classification terms as
in [35], with the idea of disentangling the latent space via label supervision. With
respect to the standard VAE, an extra recognition model is employed such that
the latent representation is split in two different sub-spaces zs and zu. In practice
the encoders q (zs|x) and q�(zu|x) map the input x to label-relevant (zs) and
label-irrelevant (zu) latent codes respectively, so to ensure label disentanglement
with zs and to discourage it with zu.

In conclusion we briefly introduce the Gaussian mixture framework of [33].
They propose to apply to the latent representation zi of instance xi with label yi
a loss made of two components: a Gaussian classification term and a likelihood
regularization term:

LGM = � 1

N

X

c

I(yi = c)
X

i

log
N (zi;µyi ,⌃yi)p(yi)X

c

N (zi;µc,⌃c)p(c)

| {z }
Lcls

+N log N (zi;µyi ,⌃yi)| {z }
Llkd

(2)

where mean µc and variance ⌃c parameters are encoding statistics gradually
computed during training. This loss is commonly used to encourage label disen-
tanglement in the label-relevant latent space.

4.2 An ELBO for Label Disentanglement

In this section we present the formulation of the ELBO we maximize, and high-
light a problem with the current approaches to its computation that inhibits the
simultaneous learning of a classification model that effectively disentangles the
label-relevant latent representations used for reconstruction.

Proposition 1 (ELBO). Given the joint distribution over input and latent

space:

p(x, zs, zu) =
X

y

p✓(x|zs, zu)p(zs, y)p(zu)

and given that p(zs, y) = p(zs|y)p(y) and, assuming conditional independence,

q (zs, y|x) = q (zs|x)p(y|x) where p(y|x) is the one-hot encoding of the label,



Interpretable and efficient counterfactual generation with DVAE 7

the ELBO of label-relevant/irrelevant VAEs [35] can be written as:

ELBO = Eq (zs|x)p(y|x),q�(zu|x)

"
log p✓(x|zs, zu)

#

| {z }
Lrec

�Dkl (q�(zu|x) k p(zu))| {z }
Lklu

�Dkl (q (zs|x)p(y|x) k p(zs|y))| {z }
Lkls

(3)

Proof can be found in appendix A. The first term Lrec is optimized by minimizing
the squared error between the input and a single-sample Monte-Carlo estimation
of the reconstruction. The second term Lklu has a closed form solution by setting
the label irrelevant prior to an isotropic Gaussian p(zu) ⇠ N(0, I). The last
term Lkls has a closed form solution as long as q (zs|x) ⇠ N (µ (x),⌃ (x)) and
p(zs|y) ⇠ N (µzs|y,⌃zs|y), under diagonal covariance matrices assumption.

The original label-relevant/irrelevant VAE approach [35] reduces the Lkls

term to a simpler log-likelihood term under the assumption that ⌃ (x)! 0:

Lkls = �log N (µ (x);µy,⌃y)

where µy and ⌃y are the learned mean and variance parameters of the latent dis-
tribution for the label of x. Such formulation disregards variance regularisation
for the label relevant latents zs and, if this is coupled with a classification loss ap-
plied directly on µ (x), the framework becomes sub-optimal for our explanatory
purposes. Indeed, we require a Gaussian classifier with equivalent performance
on the deterministic and sampled representations, as these are actually used for
reconstruction and leveraged to generate explanations, but the latter now have
arbitrary variance. For this reason we disregard this kl-divergence formulation
and take variance regularisation into account.

4.3 A Training Loss Combining Classification and Regularization

According to our learning objective, a Gaussian classifier implemented on the
latent encodings should achieve very accurate results on both deterministic
and stochastic latent representations and we also exploit the properties of the
Gaussian-mixture loss in Eq.2 to coordinate the efforts of classification and regu-
larization. We motivate still applying this framework to the deterministic latent
representations µ (x) by proving that in such condition the likelihood regu-
larization component of LGM is inherently computed in Lkls and by showing
that the learned decision boundary extends with equivalent performance to the
sampled latents as their variance tends to 0.

Proposition 2 (Regularized deterministic latent classification). Adding

a Gaussian classification loss computed on the deterministic output of the en-

coder µ (x) to the kl-divergence regularization term is equivalent to implement-

ing the Gaussian mixture loss framework coupled with an additional variance



8 C. Barbera et al.

regularization term:

Lkls + Ls
cls = LGM + Lvar (4)

where Ls
cls is the Gaussian classification loss and Lvar is the additional variance

regularization term.

We invite readers to refer to appendix for proof. Such result allows to operate
efficiently in the GM loss framework which is a corroborate approach to classify
with latent features regularization. The second great advantage is not dealing
with the additional noise due to latent sampling while learning the task. On a
final note, variance regularization does not hinder classification performance as
it is neural-network parameterized separately from the mean.

We further support our proposal by showing that the learned decision bound-
ary on the deterministic encodings applies with equivalent performance to the
stochastic encodings by proving that the expected label assigned to a stochastic
latent is the same of its corresponding deterministic representation.

Proposition 3 (Noise invariant label assignment). Let xi 2 X be an in-

stance, µ (xi) and zs ⇠ N(µ (xi),⌃ (xi)) its deterministic and stochastic en-

codings respectively and y⇤d = fM (µ (xi)) and y⇤st = fM (zs) its label as predicted

by the latent Gaussian classification model fM (·) applied to its deterministic

and stochastic encoding respectively. The expectation of y⇤st over the stochastic

encodings is the label of the deterministic encoding:

Ezs [fM (zs)] = fM (µ (x
i)) (5)

Proof can be found in appendix. This result shows that a model trained
to classify the deterministic encodings can be seamlessly used to classify the
stochastic encodings used for reconstruction. On a final note, such results re-
lies on the central limit theorem and therefore justifies the additional variance
regularisation term introduced in our loss.

4.4 The Training Algorithm

The final loss function to be optimized by the model is a combination of the
elements regarding the label relevant (Ls) and the label-irrelevant (Lu) branches
and the reconstruction loss (Lrec).

The loss of the label-relevant branch composed of the Gaussian-mixture loss
framework and the additional variance regularizer:

Ls = LGM + �sLvar

Concerning the label-irrelevant loss, common practice to ensure label indepen-
dence for the label-irrelevant encodings is to use an adversarial classifier and
feed it encodings such that the label is not predictable. We instead propose to
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stick to the mixture of Gaussian classification framework, and directly apply
Gaussian classification to the output of the label-irrelevant encoder, with the
only difference that the posterior class probabilities now should follow a uniform
distribution:

Lu
cls = �

1

n

X

i

X

y

1

|Y| log
N (µ�(xi);µzs|y, I)p(y)X

y

N (µ�(xi);µzs|y, I)p(y)

The loss of the label-irrelevant branch is a combination of the adversarial Gaus-
sian classification loss and the kl-divergence term (Eq. 3):

Lu = �uLklu + Lu
cls

The final model loss is defined as:

L = Lrec + Lu + Ls (6)

Algorithm 1 shows the pseudo-code of the training algorithm, which consists
of the following steps: 1) an instance and the corresponding output are sampled
from the dataset; 2) the instance is encoded separately with the label-relevant
and label-irrelevant branches; 3) the two kl-divergence terms are computed and,
with the supervision of the label, the adversarial classification loss and the clas-
sification loss are computed; 4) stochastic representations are sampled and con-
catenated; 5) the latent representation is decoded and the reconstruction loss is
computed; 6) the parameters of the encoders and the decoder are updated with
a gradient step. The process iterates until convergence.

5 Counterfactual Generation

In the previous section we showed how to train a deep generative model with a
Gaussian classifier that labels instances according to their label-relevant latent
representation. In this section, we present our proposal to generate counterfac-
tuals explaining the predictions to a human users.

At a high level, the procedure works as follows. Let x0 be an instance to be
predicted. The predicted label y⇤ is computed by feeding x0 to the encoders,
sampling z0s ⇠ N (µ (x0),⌃ (x0)) and z0u ⇠ N (µ�(x0),⌃�(x0)) and computing
y⇤ = fM (z0s). The user is provided with the predicted label. In case of disagree-
ment, the user can provide an alternative label ycf . In this case, a counterfactual
explanation x0

cf is generated to show how the instance should change in order
to be predicted as having label ycf . The counterfactual generation consists in
computing a latent instance z0cf such that fM (z0cf ) = ycf that optimizes the
trade-off between the likelihood of z0cf according to the adversarial distribution
and the latent distance between z0cf and z0s. The counterfactual instance x0

cf is
then obtained by decoding the concatenation of z0u with z0cf .
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Algorithm 1 Training Algorithm
Require:  , �, and ⇡ the initial parameters of ENCs, ENCu and DEC; n the

number of iterations; �u and �s the weights of regularization terms.
1: while not convergence do
2: for i = 0 to n do
3: Sample {x, y} ⇠ D
4: µzs|x,�

2
zs|x  ENCs(x)

5: µzu|x,�
2
zu|x  ENCu(x)

6: Ls  LGM + �sLvar

7: Lu  �uLklu + Lu
cls

8: Sample {zs} ⇠ N (µ (x),⌃ (x))
9: Sample {zu} ⇠ N (µ�(x),⌃�(x))

10: z  Concat(zs, zu)
11: x̃ DEC(z)
12: L Lrec + Lu + Ls

13:  ,�,⇡
+ �r ,�,⇡L

14: end for
15: end while

With regard to the counterfactual search process, in order to optimize latent
distances, we define a set, called counterfactual candidates, containing the points
that for every possible value of distance between z0cf and z0s are minimally distant
to the adversarial mean and classified as the requested label. Finally, to pick an
instance from this set without explicitly stating a distance value, we compute
the expected value of these candidates according to the adversarial distribution.
These steps are further detailed in the following.

5.1 Counterfactual Candidates

In the following section we describe the formal properties of a candidate coun-
terfactual.

Definition 1 (properties of counterfactual candidates). Given an instance

to explain x0
with latent encoding z0s predicted as class y⇤ with distribution cen-

troid µy⇤ , an instance z0cf belongs to the set of counterfactual candidates C for

the label yi with centroid µyi , if for any point z in the latent space Rk
, given the

following properties:

P1 : argmin
y

k z � µy k= yi

P2 :k z � z0s k<k z0cf � z0s k ^ k z � µyi kk z0cf � µyi k
P3 :k z � z0s kk z0cf � z0s k ^ k z � µyi k<k z0cf � µyi k

Property 1 and 2 or property 1 and 3 are never simultaneously satisfied, or:

8z0cf 2 C, @ z 2 Rk : (P1 ^ P2) _ (P1 ^ P3) (7)
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The first condition ensures that the candidate counterfactual is always pre-
dicted as the query class removing any form of validity issue, while the second
and third conditions ensure the non existence of a strictly better counterfactual.

It is straighforward to see that all the points that satisfy the first condition
and lie on the segment S1 from z0s to µyi are counterfactual candidates. In ad-
dition, we have that the decision boundary for class y⇤ and yi is the plane P
defined as:

P : (µy⇤ � µyi) · (z �
µy⇤ + µyi

2
) = 0.

Now, if S1 = {(1� t)z0s + tµyi | t 2 [0, 1]}, the intersection I between S1 and P
is:

I = (1� t⇤)z0s + t⇤µyi : t
⇤ =

(µy⇤ � µyi) · (
µy⇤+µyi

2 � z0s)

(µy⇤ � µyi) · (µyi � z0s)

Finally we define the orthogonal projection of z0s on P as ProjP (z0s).

Proposition 4 (Set of counterfactual candidates). Given an instance to

explain x0
with latent encoding z0s predicted as class y⇤, the set of counterfactual

candidates C for label yi consists of:

1. the points on the segment from z0s to µyi

S1 = {(1� t)z0s + tµyi | t 2 [0, 1]} (8)

2. the points on the segment connecting the intersection between S1 and the

decision boundary with the closest point to z0s predicted as yi

S2 = {(1� t)I + tProjP (z0s) | t 2 [0, 1]} (9)

Please refer to the appendix for the proof. A graphical representation of the set
of counterfactual candidates for an instance can be found in Figure 3.

5.2 Counterfactual as Expectation over Candidates

In the following section we define a technique to compute the expected value
of the counterfactual candidates and suggest to return it as a counterfactual
explanation. We argue that such counterfactual intrinsically optimizes the trade-
off between the likelihood of the explanation and the distance from the instance
to explain. Intuitively this is obtained by pushing the explanation away from the
adversarial mean according to the probabilities of the other candidates, which are
the weights in the expected value computation. We show that computing such
expectation has no closed form solution and a large number of samples from a
multivariate normal distribution is necessary. We then derive specific conditions
under which such estimate can be reduced to a fast and efficient sampling from
a univariate distribution.
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Fig. 3: The set of candidate counterfactuals for a random instance to explain lay
on segments S1 and S2 as per Proposition 4.

In our derivations we treat expected value computations separately for S1

and S2, and return a density-based weighted sum of the two as the final coun-
terfactual:

z0cf1 = ES1 [z] ; z0cf2 = ES2 [z]

z0cf = w1z
0
cf1 + w2z

0
cf2

with w1 =
N (z0cf1 ;µyi , I)

N (z0cf1 ;µyi , I) +N (z0cf2 ;µyi , I)
and w2 = 1� w1

Given a generic segment S from a to b as: S = {Z(t) = (1�t)a+tb | t 2 [0, 1]}
and a density function fZ , the expected value of the elements of the segment
can be expressed as:

ES [z] =

Z 1

0
Z(t)fZ(Z(t))dt

Z 1

0
fZ(Z(t))dt

=

Z 1

0

 
(1� t)a+ tb

!
fZ

 
(1� t)a+ tb

!
dt

Z 1

0
fZ

 
(1� t)a+ tb

!
dt

(10)

where the denominator assures that the density integrates to one over domain
of the segment.
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Fig. 4: Expected counterfactual visualized. (l) The expectations along segments
S1 and S2 are found; (r) The interpolation with the relative densities as weights
is the final output.

5.3 Efficient Computation of the Counterfactual

The integral for computing the expectation (Eq.10) has no closed-form solu-
tion and requires numerical methods to estimate. Sampling based methods like
Monte Carlo Integration require a considerable number of samples to produce
accurate estimates, as the density of points vanishes as the dimensions of the
distributions increase. In order to speed-up the estimation we propose an al-
ternative sampling based technique that achieves accurate results while being
computationally efficient.

Proposition 5 (Expectation along a segment parallel to an axis). Let

a = (c, c, ..., c, ak) and b = (c, c, ..., c, bk) 2 Rk
, be two points aligned along the

last axis. Let S = {(1 � t)a + tb | t 2 [0, 1]} be the segment connecting them,

and Z(t) = (1� t)ak + t(bk) the function of the last component of the segment.

In addition let fZ(z) = fZ1,Z2,...,Zk(z) the density function of the underlying

distribution of the expectation. The expected value of the elements in S according

to an isotropic Gaussian is a vector with unchanged components except for the

last one. This is the expected value of a univariate distribution in the interval

[min(ak, bk),max(ak, bk)]:

ES [z] =

 
c, c, ..., c,

Z 1

0
Z(t)fZk(Z(t))dt

Z 1

0
fZk(Z(t))dt

!
(11)

Please refer to the appendix for the proof. Intuitively, the expected value of
the elements in a segment parallel to the last axis keeps all components intact
expect the last one. 3 This expectation still has no closed form solution, but it
is much cheaper to estimate as it requires univariate samples only.
3 The choice of the last axis is arbitrary, and the result clearly holds for any axis.
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Fig. 5: Rotating the space to compute expectations 2-d visualisation step-by-
step. (u-l) The original input space; (u-c) Data is rotated such that S1 is parallel
to the x-axis; (u-r) Data is shifted to zero the adversarial mean and the intercept
between the decision boundary and S1 is computed; (b-r) Expected value along
the segment is estimated via one-dimensional sampling; (b-c) data shifted back;
(b-l) Data is mapped back to its original values inverting the rotation matrix.
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Unfortunately, segments S1 and S2 are never simultaneously parallel to the
last axis, except for extremely rare cases. In the rest of the section, we will show
how to manipulate the space to satisfy such requirement.

Given that rotating an isotropic Gaussian leaves densities of the points intact
as distances are not affected by rotations, we can define a rotation matrix R to
map a generic segment S into a segment which is parallel to the last axis.

Algorithm 2 Rotation Algorithm
Rotate(·;m, v)
Require: m, v, vector to map to rotated space z
1: zr  z
2: for i = 0 to k � 1 do
3: ✓  atan2(vi, vi+1)
4: R I
5: Ri,i  cos✓
6: Ri,i+1  �sin✓
7: Ri+1,i  sin✓
8: Ri+1,i+1  cos✓
9: zr  (zr �m) ·R+m

10: end for
11: return zr

More precisely, given a and b reference points in the space connected by a
segment S, we define a sequence of invertible rotations with respect to m = a+b

2 ,
given the segment direction vector v = b � a. Each rotation will vanish the
angle between the current component and the base vector of the next one, so to
achieve our goal in k�1 steps. The procedure is shown in Algorithm 2. To invert
the rotations and map back to the original space, we simply store the rotation
matrices and gradually update z as: z  RT

i (z � m) + m, where RT
i is the

transpose of the rotations matrices presented in inverse order of computation.
We name this inverse procedure Rotate�1.

Wrapping up, this procedure allows us to rotate the original label-relevant
latent space, compute expectations with sampling on the rotated space, and map
the expected value back in the original space without loss of information.

5.4 The Counterfactual Generation Algorithm

In the following section we assemble the various components presented so far.
The full counterfactual generation process is presented in Algorithm 3. Given an
instance x predicted as having label y⇤ and a user-provided counterfactual label
yi 6= y⇤, the explanatory pipeline consists of: 1) encoding the instance to explain
x in zs and zu; 2) rotating the S1 and S2 segments to align them on the last axis
and sampling their expectations; 3) computing the expected counterfactual zcf in
latent space by averaging the expectations from the segments; 4) concatenating
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the label-relevant and label-irrelevant latent representations and decoding the
resulting latent representation into the final counterfactual explanation xcf .

Algorithm 3 Explanation Algorithm
Require: x, y⇤, yi, instance to explain, predicted class and counterfactual class
Encode instances and extract label relevant and label irrelevant encodings
1: µ (x),⌃ (x) ENCs(x)
2: µ�(x),⌃�(x) ENCu(x)
3: Sample zs ⇠ N (µ (x),⌃ (x))
4: Sample zu ⇠ N (µ�(x),⌃�(x))
Rotate space to compute expectations along S1 and S2 sets of candidate

counterfactuals with one dimensional sampling
5: m, v  0.5(zs + µyi), (µyi � zs)
6: S1  {(1� t)Rotate(µyi ;m, v) + tRotate(zs;m, v)} | t 2 [0, 1]
7: zcf1  Rotate�1(ES1 [z];m)
8: M, v  0.5(µy⇤ + µyi), (µyi � µy⇤)
9: S2  {(1� t)Rotate(zs;m, v) + tRotate(projP (zs);m, v)} | t 2 [0, 1]

10: zcf2  Rotate�1(ES2 [z];m)
Compute expected counterfactual as density based weighted sum
11: w1  N (cf1;µyi , I)

1
N (cf1;µyi ,I)+N (cf2;µyi ,I)

12: zcf  w1zcf1 + (1� w1)zcf2
Concatenate label-irrelevant encoding of original instance with newly found

label-relevant encoding and decode to generate the explanation
13: xcf  DEC(Concat(zu, zcf ))
14: return xcf

The benefit of this procedure is that explanations have a natural and in-
terpretable connection with the instance to explain, as the label irrelevant gen-
erative factors are shared. Moreover, the estimate of the expected value via
sampling ensures in-distribution outputs as they are directly generated from the
adversarial distribution.

6 Preliminary Results

In the following section we illustrate results obtained with the implementation of
our proposal. We demonstrate the effectiveness of our model in both satisfying
assumptions of our counterfactual generative technique and learning the classi-
fication task. We also test our explanatory pipeline to generate counterfactual
instances and show our explanations for qualitative evaluation.

6.1 Data

We focus on a very popular datasets in the machine learning community to
assess the properties of our framework. FashionMNIST is an image datasets
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containing 70k samples of shape 28x28x1. Images depicts clothing articles and
we believe such domain is particularly suited to compare generated explanations
with original instances in terms of shared and perturbed aspects due to its simple
and intuitive nature.

6.2 Quantitative Evaluation

Model performance We train a Gaussian classifying deep generative model on
FashionMNIST following the procedure presented in section 2. We obtain 90.51%
accuracy on the test-set using the deterministic encodings and 86.33% accuracy
using a single sample for the stochastic encodings. As anticipated repeating sam-
pling leads to almost identical performances as using 10 samples with label as-
signed to majority votes the accuracy obtained is 90.03%. In figure 6 latent space
configurations for the label-relevant and label-irrelevant branches are shown. T-
SNE of the label-relevant encodings shows good label disentanglement, as clas-
sification performance anticipated, whereas through PCA on the label-irrelevant
encoding we can see that such latents tend to conform to the prior distribution
and are incapable of separating classes proving the effectiveness of our method-
ology.

Fig. 6: Latent space for visualized via dimensionality reduction. For the label-
relevant encodings (right) T-SNE was implemented to check class label disen-
tanglement in the latent space. For the label-irrelevant encodings instead PCA
was performed to check if latent codes conformed to the prior distribution.

Counterfactual generation One of the greatest strengths of our counterfactual
generation algorithm is the efficiency of the counterfactual search process. Indeed
as it simply consists on encoding instances, one-dimensional expected value com-
putations via sampling and decoding, we can generate a counterfactual instance
in just few seconds. More precisely average generation time is 2.156 seconds.
In conclusion, another great advantage of our framework is removing any form
of validity issue. We are indeed able to generate counterfactuals that are al-
ways predicted as the input class thanks to both our definition of candidate
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counterfactuals coupled with direct access to the model decision boundary. The
correctness of our implementation is validated by 100% validity obtained on the
generated samples.

6.3 Qualitative Evaluation

In the following section we show generated counterfactuals for similar classes
to the ones of randomly sampled instances to explain. We split our analysis
between tow categories: clothing images and foot-wear images. Indeed images
are drastically different going from one category to the other and generating
contrastive explanations for elements of different categories is somewhat pointless
as the recognition task becomes trivial. Finally we analyze few model mistakes
to further test the effectiveness of our approach on ambiguous instances. Images

Original
Pants

Reconstruction Counterfactual Counterfactual
Dress Short-sleeves

Original
Pull-over

Reconstruction Counterfactual Counterfactual
Coat Shirt

Original
Pull-over

Reconstruction Counterfactual Counterfactual
Coat Shirt

Original
Shirt

Reconstruction Counterfactual Counterfactual
DressShort-sleeves

(a) (b)

Fig. 7: Counterfactuals for footwear (a) and clothing (b). Each row presents the
original image next to the model reconstruction. Two counterfactuals for the
most probable classes are also associated to them.

of clothing and the corresponding counterfactuals can be visualised in Figure 7a
which provides for each row the instance to explain, the model reconstruction
and two counterfactuals for the second and third most probable classes according
to the model. Interestingly, even though counterfactual generation does not not
directly optimize distance in the input space, a connection between the original
instance and the explanations is evident. In our framework, sharing the label-
irrelevant encoding with the original instance is responsible for such effect and
the presented images are empirical evidence of the effectiveness of such approach.
Indeed this is particularly evident in the first row where going from pant to dress
leads to a very narrow dress generation or in the third row where a dark pull-over
is associated with dark coats and shirts. On a final note it is worth observing
that changes are highly interpretable as in row 4 going from a shirt instance
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to a short-sleeves one consists in a simple change in the collar or in the second
row where going from a pull-over to a shirt is obtained exclusively removing the
hoodie.

With regard to footwear, we visualize explanations in Figure 7b to which
many of the observations of above can be extended. It is particularly evident in
the first two rows that high shoes are associated to counterfactuals with that
property and darker images lead to darker counterfactuals. Changes here are also
rather interpretable although they are somewhat simple and consist in addition
or removal of texture and modifying the heel.

In conclusion, we present few instances consisting of model mistakes. We ask
the model why the true label was discarded and also for a counterfactual of a
very likely class and results are depicted in figure 8. Interestingly, a large portion
of the informative feedback of the explanatory process seems to arrive from the
model reconstruction. Indeed it can be seen that model reconstructions for such

Original
Shirt

Reconstruction Counterfactual Counterfactual
Shirt Short-sleeves

Prediction
Dress

Original
Bag

Reconstruction Counterfactual Counterfactual
Pulll-over Bag

Prediction
Shirt

Reconstruction Counterfactual Counterfactual
Bag

Original
Shirt Shirt

Prediction
Short-sleeve

Fig. 8

instances justify the model prediction and this is particularly evident for the
second row of the figure where the bag representation of the model has sleeves.
When asked the changes to correctly predict the label the answer is also very
informative as a circular handle is added to the top of the image. In addition,
both in first and third row where the model wrongly does not assign the shirt
label it appears evident that it strongly relies on the presence of long sleeves
for its prediction. On a final note, it is worth noticing that exploiting the model
reconstruction for explanatory purposes is extremely convenient to understand
the model inner representation of the input which is somewhat of a depiction of
how the model ’perceives’ the instance it is fed.

7 Conclusion

In this work we presented an efficient explanatory pipeline based on generative
models and counterfactual explanations. We showed how to train a deep model
that jointly addresses generation and classification relying entirely on the data
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distribution it models, and we presented a technique to provide counterfactu-
als based on the the assumption that data follows a mixture of Gaussians. We
then validated the effectiveness of the method running preliminary experiments
on FashionMNIST dataset to gain insight on the benefits and potential pitfalls
of our approach. Our results confirm the advantage of unifying the predictive
with the explanatory mechanism as they both rely on the same data-distribution
assumptions. Given the strengths of our approach, efficient generation and in-
terpretable outputs, we believe it could be especially suited for an interactive
classification setting and we plan to perform future experiments in such hybrid
setting.
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Appendix

A: ELBO derivation

We start by defining the following joint distribution:

p(x, zs, zu) =
X

c

p✓(x|zs, zu)p(zs, y)p(zu)

According to Jensens inequality we have:

log p(x) = log Eq (zs|x)p(y|x),q�(zu|x)

"
p✓(x|zs, zu)p(zs|y)p(y)p(zu)

q (zs, y|x)q�(zu|x)

#

� Eq (zs,y|x),q�(zu|x)log

"
p✓(x|zs, zu)p(zs, y)p(zu)

q (zs, y|x)q�(zu|x)

#

and:

Eq (zs|x)p(y|x),q�(zu|x)

"
log

p✓(x|zs, zu)p(zs|y)p(y)p(zu)
q (zs|x)p(y|x)q�(zu|x)

#

= Eq (zs|x)p(y|x),q�(zu|x)

"
log p✓(x|zs, zu)

#

+ Eq (zs|x)p(y|x),q�(zu|x)

"
log

p(zu)

q�(zu|x)

#

+ Eq (zs|x)p(y|x),q�(zu|x)

"
log

p(zs|y)
q (zs|x)p(y|x)

#

+ Eq (zs|x)p(y|x),q�(zu|x)

"
log p(y)

#
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The last term is a prior probability and is constant during training so it can be
ignored. The final result is:

ELBO = Eq (zs|x)p(y|x),q�(zu|x)

"
log p✓(x|zs, zu)

#

�Dkl (q�(zu|x) k p(zu))
�Dkl (q (zs|x)p(y|x) k p(zs|y))

which is the formulation presented in 3.

B: proof of proposition 2 on regularized deterministic latent

classification

We prove that a Gaussian classification loss computed on the deterministic out-
put of the encoder µ (x) to the kl-divergence regularization term is equivalent to
implementing the Gaussian mixture loss framework coupled with an additional
variance regularization term:

Lkls + Ls
cls = LGM + Lvar

Proof : Given a batch of size N set:

⌃zs|y = I

Lcls = �
1

N

X

c

I(yi = c)
X

i

log
N (µ (xi);µzs|yi

, I)p(yi)X

c

N (µ (xi);µzs|c, I)p(c)

Llkds = �
X

c

X

i

I(yi = c) log N (µ (xi);µzs|yi
, I)

LGM = Llkds + Lcls

.
The last term of the 3 is instead given by:

�Dkl (q (zs|x)p(y|x) k p(zs|y))
= �Dkl

�
N (µ (x),⌃ (x))p(y|x) k N (µzs|y, I)

�

= �
X

c

NX

i=1

Z
q (zs|xi)I(yi = c) log

p(zs|yi)
q (zs|xi)I(yi = c)

dzs

When the identity function is satisfied, this has closed form solution for two
isotropic Gaussians:

Lkls = �
X

c

I(yi = c)
NX

i=1

� log
⌃ (xi)

2
+

⌃ (xi)

2
+

(µ (xi)� µzs|yi
)2

2
� 1

2
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It is rather straightforward to see that this contains Llkds when the identity
function of its formulation is satisfied as:

Llkds = �
X

c

I(yi = c)
NX

i=1

(µ (xi)� µzs|yi
)2

2
+ const

and the remaining terms of the closed form KL divergence are interpreted as
additional variance regularization terms: Lvar.
Finally we can write as in 4:

Lkls = Llkds + Lvar

Lkls + Lcls = Llkds + Lcls + Lvar = LGM + Lvar

C: proof of proposition 3 on noise invariant label assignment

We prove that the expected label assigned to an instance using a sampled
stochastic encoding is the same as the one assigned using its corresponding
deterministic representation.
Proof : Given an instance xi 2 X , µ (xi) and zs ⇠ N(µ (xi),⌃ (xi)) its de-
terministic and stochastic label-relevant encodings, fM (·) is the latent Gaussian
classification model such that fM (zs) = y⇤st and fM (µ (xi)) = y⇤d are the two
labels predicted respectively with the sampled and deterministic latents and the
label assigned is obtained as follows:

– Class-wise distribution parameters are obtained computing statistics on the
latent encodings;

– Elements are assigned to the maximum posterior probability class according
to the Gaussian density functions.

With regard to the first element, deterministic encodings are simply encoded and
mean and variance parameters are trivially computed. For the prediction process
instead, we note that each stochastic element is predicted as the corresponding
deterministic element if their respective closest class-distribution centroid is the
same, due to diagonal covariance matrices assumption. Therefore:

y⇤st = argmin
y

k zs � µ̂y k22 ; y⇤d = argmin
y

k µ (xi)� µ̂y k22

Follows that y⇤st = y⇤d if and only if:

k zs � µ̂y
⇤
d k22 � k zs � µ̂yi k22< 0 8 yi 2 Y = {y1, ..., yc}/{y⇤d}
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By taking expectation we have:

Ezs

"
k zs � µ̂y

⇤
d k22 � k zs � µ̂yi k22

#
= Ezs

"
z2s + µy

⇤
d
2 � 2zsµy
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d � z2s � µyi

2 + 2zsµyi

#

= Ezs [z
2
s ] + µy

⇤
d
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2
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2
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⇤
d �Var[zs]� Ezs [zs]

2 � µyi
2 + 2Ezs [zs]µyi

= µ (xi)
2 + µy

⇤
d
2 � 2µ (xi)µy

⇤
d � µ (xi)

2 � µyi
2 + 2µ (xi)µyi

=k µ (xi)� µ̂y
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But by assumption:

k µ (xi)� µ̂y
⇤
d k22 � k µ (xi)� µ̂yi k22< 0 8 yi 2 Y = {y1, ..., yc}/{y⇤d}

Concluding our proof.

D: proof of proposition 4 on definition of the candidates

In this section we provide proof for the statement of proposition 5.
Given set of counterfactual candidates C, centroid µy⇤ instance z0s : fM (z0s) = y⇤,
and segment from z0s to µyi (other class centroid) S1 = {(1� t)z0s + (t)µyi | t 2
[0, 1]}, we have that the decision boundary for class y⇤ and yi is the plane P
defined as:

P : (µy⇤ � µyi) · (z�
µy⇤ + µyi

2
) = 0.

And the the intersection I between S1 and P is:

I = (1� t⇤)z0s + (t⇤)µyi with t⇤ =
(µy⇤ � µyi) · (

µy⇤+µyi
2 � z0s)

(µy⇤ � µyi) · (µyi � z0s)

Finally we define the orthogonal projection of z0s on P as projP (z0s).
We want to prove that points on the segment S2 connecting the intersection
between S1 and the decision boundary with the closest point to z0s predicted as
yi belong to the set of candidates:

S2 = {(1� t)I + (t)projP (z0s) | t 2 [0, 1]} ✓ C

Given the counterfactual candidates definition provided with 7, in order to sup-
port the statement of proposition 4 we need to show that for all points z 2 Rk

in the latent space such that fM (z) = yi at any given distance d from z0s such
that k projP (z0s)� z0s k22< d <k I � z0s k22 the closest point z⇤ to µyi lies on S2.
This is because for all elements at a distance d >k I � z0s k22 to z0s the trivial
optimum z⇤ lies on S1 and also:

@ z 2 Rk : k z � z0s k22<k projP (z0s)� z0s k22 ^fM (z) = yi
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We provide readers with a proof sketch with the help of the following image:

1 2 3

Fig. 9

Starting from the left-most picture, we see a 2-d depiction of the mean vectors
µy⇤ and µy2 , the instance to explain z0s, the decision boundary P , the intersection
I and the orthogonal projection of z0 on P . One can also notice two circles
tangent on I. The green circle represents the collection of points at distance
d =k I � µy2 k22 to µy2 and the red circle the points a distance d =k I � z0s k22
to z0s. Finally, the line tangent to the red circle in I forms an angle with the
vector µy⇤ �µy2 named ↵ and the line tangent to the green circles in I forms an
angle named �. Since the two circles are tangent in I these two lines correspond
(yellow in the image) and the angles ↵ and � are the same.

To prove tour proposition it suffices to show that for a point z00S 2 S2 the
two circles centered in µy2 and z0s and intersecting in z00s do not intersect again
for any point such that fM (z00s ) = y2. Intuitively, if this holds then any point z000s
such that k z000s � z0s k22=k z00s � z0s k22 we have: k z000s � µ0

y2
k22>k z00s � µy2 k22.

We prove this with the help of picture 2 and 3. First we notice that all the
points in a circle are bounded by a line tangent to the circle in a given point. We
exploit such tangents for our proof. If for any point z00s 2 S2, given the circles
centered in µy2 and z0s and intersecting in z00s , the lines tangent to the two circles,
respectively lµ and lz, intersect in z00s as can be seen in picture 2. To conclude
our proof we need to show that all the points in lz such that they are predicted
µy2 are closer to z0s than all the points of lµ such that they are predicted µy2 .

Such relation can be inferred by taking into consideration the angles ↵ and
� between the tangents and the vector µy⇤ � µy2 . Considering all 3 pictures
together we can see indeed that the angle � is always greater than ↵ for all
points in S2. The implication of this is that before the intersection between the
two tangents z00s the points on lµ will be closer to z0s but after the intersection,
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after which the points in lz and lµ are predicted µy2 , the points in lz will be
closer to z0s.

E: proof of proposition 5 on expectation along a segment parallel to

an axis

We show that the expected value, according to an isotropic Gaussian, of the
elements in a segment S parallel to the last axis can be computed with single-
dimensional sampling as depicted by equation 11.

ES [z] =

 
c, c, ..., c,

Z bk

ak

zkfZk(zk)dt

Z bk

ak

fZk(zk)dt

!

proof : Take two points aligned along the last axis A = (c, c, ..., c, ak) and B =
(c, c, ..., c, bk) 2 Rk, with c, ak, bk 2 R and ak < bk and the segment S connecting
them S = {(1�t)A+(t)(B) | t 2 [0, 1]}. Indeed any point z 2 S can be expressed
as a function of t: Z(t) = (1 � t)A + (t)(B). More precisely any component of
any point z 2 S can be expressed as a function of the corresponding components
of A and B and t: Zi(t) = (1 � t)ai + t(bi). Clearly such formulation leaves
all components intact (ai = c = bi 8 i 6= k) expect the last one which is:
Zk(t) = (1� t)ak + t(bk).
In addition, if the underlying distribution of the points in S is an isotropic
Gaussian we can factorize the density as follows:

fZ1,...,Zk(z1, ..., zk) =
kY

i

fZi(zi)

And the expected value becomes:

ES [z] =

Z 1

0
Z(t)fZ(Z(t))dt

Z 1

0
fZ(Z(t))dt

=

Z 1

0
Z(t)

kY

i=1

fZi(Zi(t))dt

Z 1

0

kY

i=1

fZi(Zi(t))dt

But:
kY

i=1

fZi(Zi(t)) = fZk(Zk(t))
k�1Y

i=1

fZi(c)

and:
Z 1

0
Z(t)

kY

i=1

fZi(Zi(t))dt

Z 1

0

kY

i=1

fZi(Zi(t))dt

=

k�1Y

i=1

fZi(c)

Z 1

0
Z(t)fZk(Zk(t))dt

k�1Y

i=1

fZi(c)

Z 1

0
fZk(Zk(t))dt

=

Z 1

0
Z(t)fZk(Zk(t))dt

Z 1

0
fZk(Zk(t))dt
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To conclude our proof we have that for a given t value Z(t) is a vector of the
form (c, c, ..., c, Zk(t)) and we can write:

ES [z] =

 
Z 1

0
cfZk(Zk(t))

Z 1

0
fZk(Zk(t))dt

, ...,

Z 1

0
cfZk(Zk(t))

Z 1

0
fZk(Zk(t))dt

,

Z 1

0
Zk(t)fZk(Zk(t))dt

Z 1

0
fZk(Zk(t))dt

!

=

 c

Z 1

0
fZk(Zk(t))

Z 1

0
fZk(Zk(t))dt

, ...,
c

Z 1

0
fZk(Zk(t))

Z 1

0
fZk(Zk(t))dt

,

Z 1

0
Zk(t)fZk(Zk(t))dt

Z 1

0
fZk(Zk(t))dt

!

=

 
c, ..., c,

Z 1

0
Zk(t)fZk(Zk(t))dt

Z 1

0
fZk(Zk(t))dt

!

with: Z 1

0
Zk(t)fZk(Zk(t))dt

Z 1

0
fZk(Zk(t))dt

=

Z bk

ak

zkfZk(zk)dzk

Z bk

ak

fZk(zk)dzk

Proving that to estimate the last component, which is the only one whose value
is modified, we can resort to one-dimensional sampling.


