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Abstract. Involving humans at every stage of developing a machine
learning model is crucial for making AI systems more human-centric,
both in model development and generating explanations. In this work,
we developed an approach to building and iteratively improving a ma-
chine learning model with involvement of human-gained knowledge using
a Spanish COVID-19 dataset as a test bed. This approach was then gen-
eralized for application to other data describing temporal phenomena,
processes, or events. The proposed method utilized human insights ob-
tained through visual analytics techniques applied to the data and the
model output. By incorporating these human-gained insights into the
model, performance improved and a greater understanding of the rela-
tionships between the data attributes was achieved. The insights from
the COVID-19 case study were used to propose a generic workflow for
developing human-centric models for temporal data. Additionally, the
knowledge gained from the modeling process can potentially be used for
the generation of human-centric explanations.

Keywords: Human-centric modelling · Temporal Modelling · Visual
Analytics

1 Introduction

Machine learning (ML) models are often built in a purely data-driven manner,
selecting features that optimize performance metrics such as mean squared er-
ror or area under the ROC curve. However, these approaches have limitations
that can be mitigated by incorporating domain expert knowledge. Expert knowl-
edge can help derive more expressive features than the original data variables
and create meaningful feature combinations aligned with human mental models,
enhancing the interpretability and trustworthiness of the resulting ML models.
While numeric performance indicators do not provide insights into model er-
rors or guide improvement efforts, human experts can analyze errors in detail
and find ways to improve based on their domain understanding. Additionally,
purely data-driven models can struggle with overfitting or underfitting, particu-
larly with noisy or insufficient data. Human guidance can address data quality
issues, ensuring better generalization.

Human-driven model building fosters a collaborative approach where domain
knowledge and machine learning techniques complement each other. This collab-
oration can lead to solutions that neither approach could achieve independently.
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Experts can propose hypotheses and test them using ML models, iteratively
refining both the model and their understanding of the domain. In dynamic en-
vironments, such as the COVID-19 pandemic, where underlying patterns and
relationships can evolve rapidly, human experts can continuously update the
model with new insights and data, ensuring it remains relevant and accurate.

Our research focuses on models dealing with sequences of events that reflect
the evolution or progression of temporal phenomena through identifiable stages
or manifestations. The modeling task involves representing the interplay of two or
more phenomena that may influence each other. We develop our approach within
a case study on modeling the interrelationships between COVID-19 dynamics
and changes in population mobility behavior. The goal of the model is to predict
the next pandemic event based on preceding events and mobility behaviors.

We build and iteratively improve an ML model using visualizations to under-
stand the phenomena and model properties. We incorporate human insights into
the model through data operations rather than specialized algorithms, aiming
for compatibility with common ML techniques. This empirical study is synthe-
sized into a general framework specifying visualizations, data operations, and
interaction techniques to support human-driven model development for tempo-
ral data. This paper presents our case study, followed by the general framework
derived from our experiences, focusing on human-driven model development for
temporal phenomena.

2 Related Work

In this work, we propose a methodology for model building that leverages human
knowledge obtained through visual analytics (VA) for temporal data. We first
introduce the current research landscape in human-centered modeling and some
aspects of temporal modeling.

The incorporation of prior knowledge into the ML process is known as “in-
formed ML”. Unlike traditional ML methods using prior knowledge indirectly
through feature engineering or hyperparameter tuning, informed ML utilizes
knowledge represented explicitly in machine-processable forms, such as alge-
braic equations, logic rules, or knowledge graphs [19, 5]. While VA can poten-
tially support the acquisition of knowledge from human experts, including both
prior knowledge and newly obtained insights from visual analysis [2], we are not
aware of existing VA systems that facilitate externalization of expert knowledge
for ML. However, there are instances of using VA for developing conceptual
models, even if not directly intended for ML integration [7, 23].

More traditionally, VA can facilitate involvement of human knowledge through
preparation of input data for ML (selection, cleaning, feature engineering, etc.)
and iterative model refinement. Liu et al. [14] proposed a VA framework for
steering data quality. Hong et al. developed a VA system that supports impu-
tation and transformation techniques to improve data quality, enhancing ML
performance [9]. The system also aids in visual interactive labelling and other
steps of data preparation. Andrienko et al. propose a VA approach for generating
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descriptive features of movement patterns and interactive labeling for classifier
training [3]. Muhlbacher and Piringer describe using VA to iteratively refine re-
gression models [18]. Comprehensive surveys highlight VA’s role in data science
workflows and ML model building [16, 22, 21].

Human-AI interaction techniques support attaining the goals of explainable
and interactive ML, which include understanding and justifying model decisions,
diagnosing model failures, and refining models to fit application domains [15,
20]. VA frameworks like “explAIner” [20] combine interactive ML and VA for
conducting a dialog with a user in which explanations are iteratively refined.

For temporal data, human knowledge is integrated in ML models through
converting raw data into interpretable patterns represented by combinations of
descriptive features. This operation is called “temporal abstraction” [4]. From a
large variety of summary statistics that can be derived from time series data [17],
selecting relevant and understandable features remains challenging. Andrienko
et al. [3] propose a VA approach transforming time series to episodes which
capture the patterns of interest and computing key attributes to form train-
ing data for pattern classification. However, this focuses on data preparation
without addressing model development. Our work extends this by using tempo-
ral abstraction and pattern classification for predictive modeling and applying
VA techniques throughout the model development process, including evaluation,
comparison, and iterative refinement.

3 Case Study

As stated in the introduction, our task is to predict the class of the next COVID-
19 event (i.e., the level of morbidity) based on preceding disease events and levels
of population mobility. The data consist of two parallel event sequences: one for
disease events and another for mobility events. These parallel sequences are
available for different geographic areas; in our case study, these are 52 provinces
of Spain. The original data were provided in the form of continuous numeric
time series. We transformed them to event sequences, where each event spans
over a time interval in which the class (level) of disease morbidity or mobility
behavior is distinct from those in the preceding and following intervals. While
the two event sequences unfold in parallel over time, there is no synchronization
between the events, and they have variable duration.

3.1 Original data

We used two openly available datasets prepared by Ponce-de-Leon et al. [10]:
daily counts of new COVID-19 cases for the 52 provinces of Spain covering the
period from 01/01/2020 to 12/08/2021 [11] and daily counts of trips within and
between the provinces covering the period from 14/02/2020 to 09/05/2021 [12].
For our analysis and modeling, we used data from 17/02/2020 (Monday) to
09/05/2021 (Sunday), encompassing 64 full weeks. We transformed the disease
case counts into counts per 100,000 province inhabitants using openly available
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population data [13]. The counts of trips within the provinces were normal-
ized to the pre-pandemic levels still attained in the period from 14/02/2020 to
10/03/2020, as can be seen in Fig.1, bottom.

Based on general knowledge about the impacts of people’s mobility on the
spread of contagious diseases and specific historical knowledge about the pan-
demic and mobility reduction measures taken in different countries, we hypothe-
sized that the morbidity and mobility time series are linked by two-way relation-
ships. Changes in disease levels may lead to adaptations in population mobility
behaviors, and changes in mobility behaviors affect the further evolution of the
pandemic. However, the effects of each phenomenon on the other become notice-
able after certain time lags. To determine the temporal horizons of these effects,
we conducted cross-correlation and Granger causality [8] analyses. Visual dis-
plays, as shown in Fig.2, were used to explore the correlation and causality
coefficients across different time lags. The calculations were done separately for
three time periods: 17/02/2020 to 30/04/2020; 01/08/2020 to 15/11/2020; and
01/01/2021 to 09/05/2021. These periods roughly correspond to three major
waves in the pandemic evolution visible in the upper graph in Fig.1. We con-
sidered these periods separately because population mobility behaviors did not
change uniformly across them, as seen in the lower graph in Fig.1.

The graphs in Fig.2 show that the three periods indeed exhibited different re-
lationships between the pandemic and mobility levels. Unlike the first period, the
second and third periods are characterized by significant variation in the cross-
impacts between the two phenomena across the provinces. Nevertheless, the first
period, marked by large and consistent changes in mobility across provinces, al-
lows us to determine the time ranges in which changes in one phenomenon may
affect the other. Specifically, we found that mobility affects morbidity levels
within 14 to 35 days, and morbidity levels affect mobility within 7 to 14 days.
These findings guided the further analysis.

3.2 Data processing

To minimize the influence of the irrelevant weekly cycle in the data variation, we
smoothed both sets of time series using a forward moving average with a sliding
window of 7 days. We segmented the series into weekly episodes and catego-
rized them into four levels of pandemic severity and four levels of mobility, using
an interactive approach with feature-based spatial embedding, clustering, and
kNN classification [3] For this purpose, the value variation in the episodes was
represented by summary features including the median, maximum, and trend
line angle. The COVID-19 levels were denoted as ‘c1’, ‘c2’, ‘c3’, and ‘c4’ and
the mobility levels were labeled as ‘m1’, ‘m2’, ‘m3’, and ‘m4’, where ‘m4’ repre-
sents normal or near-normal mobility, and ‘m1’ indicates predominant staying at
home. Consecutive episodes of the same category were combined into continuous
events of varying duration, creating non-synchronized event sequences.

To visualize the event sequences, we created timeline displays (Fig.3) showing
the distributions of event categories over time and across provinces. However, this
data format is not directly suitable for ML algorithms. For a model predicting
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Fig. 1: Upper image: Time series of new COVID-19 cases per 100,000 inhabitants
in the Spanish provinces. Lower image: Time series of daily trip counts within
provinces, normalized as percentages of the respective values during the normal
mobility period from 17/02/2020 to 10/03/2020. The vertical line marks the
date 10/03/2020. In both graphs, each grey line represents one province, and
the thick black line shows the variation of the country’s mean.

Fig. 2: Series of correlation coefficients between the COVID-19 and mobility time
series, calculated over time lags from 0 to 42 days separately for the time periods
17/02/2020-30/04/2020, 01/08/2020-15/11/2020, and 01/01/2021-09/05/2021.
The graphs on the left display the lagged correlations of new disease cases to
mobility levels, and the graphs on the right show the inverse correlations. The
thick black lines connect the mean values over the sequences of time lags.
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Fig. 3: Fragments of the timeline displays of the pandemic events (top) and mo-
bility events (bottom). The horizontal dimension represents time, while each row
corresponds to one province. Events are depicted as horizontal bars positioned
according to their occurrence times, with bar lengths proportional to event du-
rations. The colors indicate the event categories; see the legends on the right.

Fig. 4: Extracting and representing temporal contexts of events. A: The context
of one reference event. B: The context represented as a binary matrix. C: Ag-
gregated visual representation of temporal contexts of multiple events.
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the class of a target pandemic event based on preceding disease and mobility
events, we need to represent the preceding events of each pandemic event in the
data as features of that event.

We achieve this by extracting the temporal contexts of the pandemic events.
The temporal context includes the disease and mobility events within a specified
time window before the target event. This is illustrated in Fig.4A using an ex-
ample reference event. The temporal context is represented by a binary matrix,
with columns corresponding to equal-length intervals within the time window
and rows representing event types. Values of 1 and 0 indicate the presence or
absence of each event type in each interval. In Fig.4B, the values 1 and 0 are
visually represented by filled or empty cells. The time window length is 6 weeks,
chosen based on the time horizons of possible effects between events (see Section
3.1). It is divided into 6 weekly intervals.

The contexts of individual events can be aggregated by event groups and
visualized as shown in Fig.4C. Each matrix corresponds to one class of pan-
demic events, indicated by the color of the squares in the cells. The square sizes
are proportional to the counts of the value 1 in the corresponding positions of
individual event matrices.

As the categories of both COVID-19 and mobility events are ordered, we
can represent the event context alternatively by specifying the ordinal numbers
of event categories in each interval, i.e., using numbers from 1 (lowest level) to
4 (highest level). This representation can be more suitable for ML algorithms
requiring numeric features. For training and testing our model, we use the trans-
formed data, which include the class (severity level) of each pandemic event and
the temporal context from the preceding 6 weeks.

3.3 Model development

Initially, a base model was developed using six-week event contexts to predict
the current level of COVID-19 based on historical behavior. To make the model
more realistic, we excluded the immediately prior two weeks of pandemic data
and one week of mobility data, as such up-to-date data may not be available in
practice. We also removed the sixth week prior to the event due to its minimal
contribution to predictions.

Initial data exploration suggested that the distinct characteristics of the first
pandemic wave might require excluding this period from the model. We also
noted geographic differences, specifically disparities between islands and main-
land provinces. Nonetheless, we created the first model variant using all data to
understand the effects of these temporal and spatial disparities on predictions.
For modeling, we employed a random forest algorithm with a set random seed
for reproducibility and used a 5-fold cross-validation strategy.

Predictions from the initial base model were visualized in a timeline dis-
play similar to Fig.3, top, to observe spatial and temporal patterns. Juxtaposed
timeline displays of the true and predicted event classes are shown in Fig.5. The
prominent visual differences indicate numerous classification errors. To under-
stand the character and spatio-temporal distribution of these errors, we com-
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(a) The true class labels (b) The predicted class labels

Fig. 5: The (a) true versus (b) predicted class labels using the base model for
every province plotted along the time period of interest. The class labels are:
Green: C1, Yellow: C2, Orange: C3, Red: C4

Fig. 6: The prediction errors of the base model. The shades of blue and red repre-
sent, respectively, under- and over-estimations, with shade darkness representing
the amount of the difference.

puted the differences between the predicted and actual classes, treating cate-
gories c1 to c4 as numbers from 1 to 4, and explored the distribution using a
timeline display as in Fig.6. It reveals that the model underestimates COVID-19
levels during the first wave. Dependencies learned from this period, apparently,
lead to significant underestimations during subsequent waves. This aligns with
our anticipation that the distinctiveness of the initial period may have a negative
impact on model learning. Therefore, excluding this period from model training
is a reasonable strategy.

Additionally, the distribution of model errors confirms that geographic differ-
ences, specifically between islands and the mainland, hinder proper generaliza-
tion and impair model performance. Hence, it makes sense to develop separate
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Model Operations undertaken 5-Fold CV mean accuracy
M1 Basic Model - No extra operations 0.71244
M2 First 30 days removed 0.71827
M3 Number of weeks since the start added as a feature 0.74798
M4 Duration of the event added as a feature 0.78847
M5 All island provinces are removed 0.71636
M6 All of the above operations 0.86334

Table 1: A summary of the operations applied during the iterative model devel-
opment and the performance of the resulting model versions.

models for the mainland and islands. In our case study, we chose to exclude the
islands from consideration.

Based on these observations and examination of subsequent model versions,
we iteratively developed six model versions, aiming to improve prediction per-
formance using insights gained from data and model behavior exploration. As
mentioned in the introduction (Section 1), we refrained from using or develop-
ing special algorithms capable of directly incorporating expert knowledge into
the model training process. For common ML algorithms, the only way to utilize
expert knowledge is through careful preparation and selection of training data.
Hence, we applied a series of modifications to the training dataset, summarized
in Table 1, which also displays the accuracy scores of the model versions.

Fig. 7: Error distributions for six model versions. Shades of blue and red sig-
nify under- and overestimated events, respectively, with darker shades indicating
greater degrees of under- or overestimation.

Figure 7 shows the misclassified events across the six models tested. With all
modifications included, the error rate is substantially reduced, and the temporal
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Type of knowledge Origin Utilization
Initial period of yet normal
mobility

Visualization of the time se-
ries of trips counts

Baseline values for trans-
forming the absolute counts
to relative

Weekly patterns of mobil-
ity and COVID-19 (week-
end drops)

Time series plots Smoothing over 7-days pe-
riod, use of week-based sum-
mary features for defining
event categories

Distribution of ranges and
trends of weekly variations

2D embedding and cluster-
ing of weekly episodes

Categories of COVID-19
and mobility events

Time horizons of possible
effects between COVID-19
and mobility

Cross-correlation and
Granger causality analyses

Lengths of the temporal
contexts of the events to be
used for prediction

Differences of temporal pat-
terns between islands and
continental provinces

Timeline displays of events;
interactive map-linked time
series plots

Islands are disregarded as
outliers

Differences in COVID-19
and Mobility behaviour
along time (the three
different waves)

Time series plots and cross-
correlation analysis

Days since the start and du-
ration of events added as
features; separation of wave
1 from waves 2 and 3

Distinctive, non- generalis-
able COVID-19 and mobil-
ity patterns during wave 1.

Timeline view of misclassifi-
cations from the base model

The initial days of COVID-
19 were cut off from the
analysis

Table 2: Different types of knowledge generated using VA techniques and utilised
in model development

patterns of the errors observed in M1 are not evident in M6. While each modifi-
cation produced small improvements, the combination of all leads to significant
performance enhancement. The accuracy improvement from about 0.71 to 0.86
was achieved through knowledge-informed operations modifying the input data
for model training. The knowledge includes the initial understanding of possible
interrelationships between population mobility and pandemic development, as
well as specific insights about the processes in Spain during the COVID-19 pan-
demic. These insights were gained from the available data using VA techniques.
Table 2 summarizes the types of knowledge extracted during data exploration
and model building and how each piece of knowledge was utilized.

Our case study demonstrates the potential of integrating human knowledge
into the data-driven model building process and the effectiveness of using visual
analytics to gain relevant knowledge to guide this process.
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4 General framework

In the previous section, we demonstrated how to incorporate human knowledge
into modeling through a case study on COVID-19 and population mobility data
from Spanish provinces. Building on this experience, we aim to generalize this
model development process for application to similar temporal datasets.

4.1 Iterative development workflow

A strategy for advancing human-centered machine learning by integrating visual
analytics with ML and explainable artificial intelligence (XAI) was presented in
[2]. The key idea is that VA enables humans to understand and organize data
and define relevant concepts, which can subsequently be used in ML algorithms.
Human expert knowledge can then be utilized by the XAI component to pro-
vide meaningful explanations. In this paper, we focus on the initial part of this
integration, developing a general workflow for incorporating human knowledge
into an ML model.

Figure 8 illustrates a general workflow where the model is iteratively refined
based on insights gained from the data or model results. In this framework, the
knowledge acquired by humans is of primary importance. VA plays a dual role:
enabling humans to build, extend, and refine their mental model of the phenom-
ena and relationships in the data [1], and supporting communication between
the human and the computer executing the modeling algorithm. While specifics
may vary across different domains and applications, the types of the knowledge
gained and the ways of using these knowledge types can be generalized, as dis-
cussed further in Section 4.2.

Fig. 8: Workflow for iterative model development involving human knowledge.
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4.2 Knowledge-informed operations on input data

Human knowledge can be incorporated in a model through following generic
operations on input data:

– Define contexts: For a model making predictions for time intervals, spatial
locations, graph nodes, or other entities influenced by surrounding entities
and/or conditions, identify the scope of the neighborhood where influences
are substantial. Create a suitable representation of these contexts. For in-
stance, in our case study, we defined temporal contexts of pandemic events,
incorporating prior pandemic events and mobility behaviors.

– Remove irrelevant patterns: Eliminate patterns irrelevant to prediction
tasks through smoothing, decomposition, or filtering. We removed the weekly
variation cycle in the pandemic and mobility data using temporal smoothing.

– Represent relevant patterns with descriptive features: For time-
variant attributes, represent the variation by summary features capturing
value magnitude, development trend, and fluctuation intensity [3]. Similarly,
other pattern types, such as dense spatial clusters or graph node communi-
ties, can be represented by summary features derived from the elements.

– Temporal decomposition: Apply when temporal variation patterns change
over time due to seasonal trends, specific events, or interventions. In our
study, we decomposed data by the 1st, 2nd, and 3rd waves to reflect differ-
ent pandemic phases.

– Spatial decomposition: Applied to spatially distributed data to handle
spatial disparities arising from natural or economic conditions, geographical
barriers, or varying strengths of spatial links and communications.

– Introduce features to capture trends: Add features like ’days since the
start’ to help the model learn how phenomena change over time. For spatial
trends, use distances from reference locations, such as transportation hubs
or shopping centers. In graph data, similar features include distances from
influential nodes, particularly, in social networks.

– Remove outliers and unrepresentative data: Exclude periods or anoma-
lies that do not represent typical behavior. For example, in our study, we
removed the initial days with patterns unique to this period.

By systematically applying these knowledge-informed operations, models can
better capture underlying patterns and relationships in the data, enhancing per-
formance across various applications.

4.3 Towards integration with XAI methods

Human-centered ML involves (1) integrating human knowledge into ML models
and (2) explaining these models and their results meaningfully. Both aspects are
essential for creating effective and trustworthy ML systems. This paper focuses
on the first aspect. We describe how human expertise can be incorporated into
ML models through feature engineering, data preparation and selection, and
iterative model refinement.
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For the second aspect, the same knowledge needs to be explicitly represented
so that XAI methods can use it for generating understandable explanations. This
can be a kind of meta-model with domain concepts and relationships. It may take
the form of a knowledge graph [6] enhanced with human-oriented annotations.
Extending VA systems to facilitate knowledge externalization and provenance
capture is necessary for building such a meta-model [23].

However, a meta-model alone isn’t enough for conducting explanatory con-
versations where users can ask for similar and contrasting examples and coun-
terfactual explanations. For generating meaningful examples, the XAI system
needs to understand data properties and constraints, such as temporal depen-
dencies (e.g., COVID-19 morbidity levels cannot change instantaneously from c1
to c4). The system should also “know” what changes in the input are practically
feasible for obtaining a desired outcome, like improving pandemic conditions by
modifying mobility behavior. This kind of intelligence can be supplied to the
XAI system as a combination of constraints.

Advancements in this direction require developing constraint typologies, con-
straint steerable XAI systems, and VA interfaces for capturing these constraints
from experts during model building. These developments will enable ML systems
to effectively integrate human knowledge and provide clear, actionable explana-
tions, enhancing usability and trustworthiness.

4.4 Discussion

The approach taken in our case study mirrors real-world scenarios where expert
knowledge and domain-specific insights are crucial for improving model perfor-
mance. This aligns with many applications in fields such as healthcare, finance,
and environmental science. We have demonstrated that human knowledge can be
incorporated into a model even without developing specialized ML algorithms,
but merely by modifying input data. Generalizing our experience, we created a
set of widely applicable operations on data that can be used for integrating hu-
man knowledge into models irrespective of the ML methods employed for model
training. This method-independence, combined with the existence of numerous
tools in data science enabling the implementation of these operations, justifies
their high practical value.

However, it should be acknowledged that the success of this framework de-
pends on the availability and expertise of domain experts. Domain experts may
not be skilled in conducting data science workflows, and the framework implies a
collaborative approach where domain experts and data scientists work together,
iterating on the model based on continuous feedback and insights. Ideally, this
process should be supported by tools that are seamlessly integrated into the
machine learning pipeline.

Another concern is that human knowledge can introduce biases. It is essential
to validate and cross-check expert insights to mitigate the risk of biased out-
comes. Tracking the provenance of all human-generated artifacts and recording
the rationale for data modifications are also crucial for maintaining transparency
and accountability.
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Our endeavor to use the experience from a case study for developing a general
framework appears both valid and feasible. The empirical success in improv-
ing model performance through human knowledge-driven operations provides
a strong basis and motivation. By structuring this approach into a repeatable
framework, we hope to offer a valuable methodology for many applications where
expert knowledge is of primary importance.

5 Conclusions and Future Work

This paper presents a framework for integrating human knowledge into machine
learning model development, demonstrated through a case study on COVID-19
and mobility data from Spanish provinces. By employing knowledge-informed
operations on input data, we significantly improved model performance. Our
approach is method-independent and leverages existing data science tools, mak-
ing it broadly applicable across domains.

The key contributions of our work include: (1) a set of generalized operations
for embedding expert knowledge into data preparation and feature engineering.
(2) a practical workflow for human knowledge-driven model building; (3) empiri-
cal validation of the workflow and demonstration of its practical implementation.

Our results highlight the importance of human expertise in model refinement
and the potential for further enhancing model interpretability and trustworthi-
ness through the integration of explainable AI methods. The framework proposed
in this paper targets key areas of human-centered AI, allowing human involve-
ment in every stage of the modeling process. Furthermore, these methods have
the potential to be extended to an XAI context where the obtained knowledge
would form the basis for formulating explanations.

Our generalized framework for modeling has been proposed is currently sup-
ported by a single case study demonstrating its validity. The immediate future
direction for this work is to test and refine the workflow based on other appli-
cations involving temporal phenomena, processes, or events. Additionally, this
approach should be extended to include a workflow for providing explanations
to end users.
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