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Abstract. With the growing access to administrative health databases,
retrospective studies have become crucial evidence for medical treatments.
Yet, non-randomized studies frequently face selection biases, requiring
mitigation strategies. Propensity score matching (PSM) addresses these
biases by selecting comparable populations, allowing for analysis without
further methodological constraints. However, PSM has several drawbacks.
Different matching methods can produce significantly different Average
Treatment Effects (ATE) for the same task, even when meeting all
validation criteria. To prevent cherry-picking the best method, public
authorities must involve field experts and engage in extensive discussions
with researchers.
To address this issue, we introduce a novel metric, A2A, to reduce the
number of valid matches. A2A constructs artificial matching tasks that
mirror the original ones but with known outcomes, assessing each match-
ing method’s performance comprehensively from propensity estimation
to ATE estimation. When combined with Standardized Mean Difference,
A2A enhances the precision of model selection, resulting in a reduction
of up to 50% in ATE estimation errors across synthetic tasks and up to
90% in predicted ATE variability across both synthetic and real-world
datasets. To our knowledge, A2A is the first metric capable of evaluating
outcome correction accuracy using covariates not involved in selection.
Computing A2A requires solving hundreds of PSMs, we therefore auto-
mate all manual steps of the PSM pipeline. We integrate PSM methods
from Python and R, our automated pipeline, a new metric, and repro-
ducible experiments into popmatch, our new Python package, to enhance
reproducibility and accessibility to bias correction methods.

Keywords: Propensity score matching · Causal effect estimation · Python

1 Introduction

Propensity Score Matching (PSM) seeks to mitigate selection bias between control
and treated populations by identifying comparable subpopulations based on
potentially confounding covariates. According to the propensity score theorem [19],
under strong ignorability – i.e., treatment assignment is independent of potential
outcomes conditional on the confounding covariates – the propensity score can
balance treatment groups and allow estimating causal effects. When applicable,
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this method is convenient because it enables matching on a single value rather than
full samples, as required in Mahalanobis matching, and it allows for the subsequent
use of conventional statistical techniques. Since its initial definition three decades
ago [19], PSM has undergone numerous methodological improvements [20], has
been proven accurate by meta-analysis [16] and therefore recognised as a valid
bias correction by French health authorities [5].

Despite these positive signals, PSM faces criticism for both theoretical and
practical flaws [8].The typical PSM pipeline [11], illustrated in Figure 1, includes
three steps with multiple options (in blue) and two validation steps (in red).
Guidelines recommend progressing as far as possible in the pipeline, making
adjustments when validations fail, and backtracking when all alternatives are
exhausted [11]. Unfortunately, the many options at each step lead to a combi-
natorial explosion of pipelines, each measuring a different Average Treatment
Effect (ATE), with no established best practices for choosing the best model.
Without strict validation, many results may seem valid, potentially misleading
practitioners to select pipelines that fit their hypotheses rather than adhering to
best practices.

Reporting difficulties. As each step of this pipeline is manual, the practitioner must
carefuly motivates his choices through standardized feature assessment before
selection, evaluation of unmatched patients, visual inspection of propensity scores,
and more [6,11]. This complexity hinders reproducibility and leads to significant
shortcomings in method reporting. Systematic reviews of PSM applications reveal
that many studies fail to adequately assess the balance of covariate after matching.
This issue is observed in 17% of studies according to a 2008 study [1], 28% in
2011 [21], 26% in 2015 [13], 20% in 2017 [23], and in a substantial 48% in a 2020
study [4]. The situation is even more concerning when it comes to reporting the
matching method itself with numbers as high as 30% in a 2008 study [1], 48% in
2011 [21], 33% in 2015 [13], and 30% in a 2017 study [23].

Efforts have been made to streamline these best practices, including the cre-
ation of visual aids in the MatchIt package [18,10], but ensuring the practitioner’s
objectivity remains challenging. In this study, we lay the groundwork for a fully
automated PSM system that, similar to autorank [7], could automatically make
decisions and provide a comprehensive report detailing the rationale behind them.

High variability in valid ATE. The first validation step in the pipeline, specific
to propensity-based methods, involves visually inspecting the propensity score
distributions. The second step, common to all bias correction methods, is verify-
ing covariate balance, usually based on Standardized Mean Difference (SMD).
Model and hyperparameter choices for propensity estimation and matching can
significantly impact variability in the results. This variability can stem from
model dependence [8], unknown confounders, or inaccurate propensity estimation,
all of which are difficult to diagnose. For example, MatchIt offers 11 propensity
models and 8 matching methods, resulting in 88 possible matchings with varying
ATE, many of them being valid according to our experiments. Stricter validation
may help address this issue, which is the primary goal of this work.
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While these issues are still debated , PSM remains a reference method in
retrospective studies [23,4,22,15], necessitating a practical response to prevent
decisions based on flawed interpretations. We tackle the issue of combinatorial
explosion by enhancing method validation to minimize variance in estimated
effects. Employing a fully automated pipeline, we investigate multiple PSM
methods for each task, highlighting the variability in methods deemed valid by
SMD. Then, we demonstrate that our metric A2A aids in reducing their quantity
while retaining the most accurate ones. This work is organised as follows. We
begin by highlighting the shortcomings of PSM assessment. Then, we present
our evaluation task and how to create an articifial task from the data at hand
and use it to validate a method. Finally, we expose our results and discuss them.
Note that the code for all the presented methods and experiments is available in
popmatch3, our Python package for PSM.

Covariate
selection and
engineering

Propensity model
selection (2.3)

Propensity
estimation and
validation (2.2)

Matching tech-
nique selection

Perform and
validate match-
ing (2.4, 2.5)

Compute average
treatment effect

Invalid propensityNo more models

Invalid matching

No more techniques

Fig. 1. Propensity score matching pipeline. Blue boxes indicate steps where the practi-
tioner makes choices. Red boxes indicates steps ending with a validation. Backward
arrows show points where the practitioner may revisit previous decisions.

2 Methods

PSM consists of finding, in a control and treated population, two exchangeable
subsets for comparison. For generality, we refer to the two initial sets as X0 and
X1, and their matched counterparts as X̂0 ⊆ X0 and X̂1 ⊆ X1. The associated
targets of interest are Y0, Y1, Ŷ0, Ŷ1. This work focuses on bipartite matching,
where all patients from the smaller population are matched with patients from
the larger one. This section outlines our automation of the PSM pipeline and
the development of our metric, following the pipeline as presented in Figure 1.
Instead of experimenting and backtracking like in a single experiment, we apply
3 Code is available at https://github.com/NamelessAuthor/popmatch

https://github.com/NamelessAuthor/popmatch


4 A. Abraham and A. Hoyos Idrobo

all available options for each task. This approach simulates the variability in
results that would occur if different practitioners used different methods for the
same study.

2.1 Real and synthetic tasks

Synthetic tasks simulate the treatment effect for each patient, allowing us to make
an exact comparison between the measured and real ATE. For data generation,
we draw inspiration from the setup B in [14] and their implementation in the
CausalML Python package [2]. We use synthetic data comprising 3 000 samples
with 10 numerical features and vary the number of confounders from 0 to 10 to
observe their impact on the metrics.

Real-life tasks rely on openly available datasets that include a treatment variable,
as summarised in Table 1. Missing data is imputed using the mean for continuous
variables and the mode for categorical ones. The objective variable is binary for
Horse Colic and NHANES, and real for Groupon. These datasets are used to
analyse the behaviour of our metrics and not for performance evaluation since
the real ATE is not known.

Table 1. Real-life dataset used for experiments. "Cont." represents continuous features,
while "Cat." represents categorical ones.

Dataset # Samples # Cont. # Cat. Treatment Prediction

Groupon4 710 4 2 Discount applied Revenue
Horse colic 300 7 13 Surgery or drug Survival
NHANES5 3974 4 15 Rheumatoid arthritis Heart attack

2.2 Reminder: Computing propensity scores

The propensity score is the probability of receiving treatment given a set of
covariates x:

P̂S(x) = P [T = 1 | x] + ϵ, (1)

where T is a binary treatment indicator, with T = 1 if the unit is treated and
T = 0 otherwise, x = (x1, x2, . . . , xn) is a vector of covariates, ϵ is the error term.
Since the predicted probability and its complement can be used as denominators

4 Dataset provided by Harry Wang using Groupon data https://www.kaggle.com/
code/harrywang/propensity-score-matching-in-python/input

5 Provided by Ehsan Karim using openly available data from the CDC https://www.
kaggle.com/code/wildscop/propensity-score-matching-on-nhanes

https://www.kaggle.com/code/harrywang/propensity-score-matching-in-python/input
https://www.kaggle.com/code/harrywang/propensity-score-matching-in-python/input
https://www.kaggle.com/code/wildscop/propensity-score-matching-on-nhanes
https://www.kaggle.com/code/wildscop/propensity-score-matching-on-nhanes
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in inverse propensity weighting, it is considered best practice to clip them within
the interval [0.05, 0.95] [11].

Propensity models are trained through feature preprocessing, feature selection,
and model optimization. For feature preprocessing, continuous variables are
centered and standardized to unit variance, while categorical variables are one-
hot-encoded. Feature selection is unnecessary for our synthetic tasks as all
features influence either propensity or outcome. Same goes for real tasks as the
accompanying documentation suggests no feature is irrelevant.

We consider three propensity models that differ in nature and calibration
methods. Logistic Regression (LR) is the most common and is calibrated
using simple population weighting. Chunked Logistic Regression (CLR),
introduced in PsmPy [9], is a classic LR model using scikit-learn’s LR with a
liblinear backend6. It is calibrated by segmenting the largest population into
chunks the size of the smallest one and performing repeated predictions. This
distinctive approach, not explained in their paper, yields results different from
those of classic LR. We also use the more recent Random Forest (RF) [24],
designed to handle non-linear data, and calibrate it using Platt’s scaling [17]. For
all methods, we consider both raw predicted probabilities and logit link.

2.3 Automating propensity model hyperparameter selection

Propensity models may have hyperparameters, such as the number of trees for
RF. Setting them based on prediction accuracy in a cross-validation (CV) scheme
is impossible since propensity scores lack a ground truth. We propose to use
a composite score to evaluate the best method. This score is computed on the
left-out test set and is composed of:

Model performance as classification accuracy. Even if the true propensities
are unknown, the binary assignment remains relevant information, as we
expect the treated group to have a higher propensity:

Accuracy =
1

N0

∣∣{x ∈ X0 : P̂S(x) < 0.5}
∣∣+ 1

N1

∣∣{x ∈ X1 : P̂S(x) ≥ 0.5}
∣∣.

Extreme value ratio as the ratio of values outside of the interval [0.05, 0.95]
predicted in the left-out test set. While extreme propensities can be clipped,
it is preferable to have none:

Extremes =
1

N

[∣∣{x ∈ (X0 ∪X1) : P̂S(x) /∈ [0.05, 0.95]}
∣∣].

Overlap coefficient [12] between the normalized histograms of the valid
propensity scores of both populations in strata of 0.1. This automates the
visual inspection recommended in best practices [11].

NHi(X) =
1

|X|
∣∣{x ∈ X : P̂S(x) ∈ [i× 0.1− 0.05, i× 0.1 + 0.05]}

∣∣
6 Surprisingly, using a different backend degrades CLR’s performance. This behavior

warrants further investigation.
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Overlap =
∑

i∈[1,...,9]

min(NHi(X0), NHi(X1))

This idea is reminiscent of stratified propensity matching and is depicted in
Figure 2. Note that throughout the paper, a propensity method is deemed
invalid if this overlap falls below 0.5.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85
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Fig. 2. Example of propensity score histograms for control and treated population. The
hatched area corresponds to the overlap between the two.

We use the following composite score in a 5-fold cross-validation (CV) to
select the best models:

Score = Accuracy + (1− Extremes ratio) + Overlap ratio.

2.4 Validating matching with covariate balancing

SMD computes the distance between two distribution of features, typically control
and treated populations. SMD for continuous variables is usually computed
using Cohen’s D with pooled standard deviation, i.e. the T-test effect size. For
categorical variables, we use Cramér’s V, the χ2 effect size, as there is no standard:

Cohen’s D =
µ0 − µ1√

(N0−1)·σ2
0+(N1−1)·σ2

1

N0+N1−2

, Cramér’s V =

√
χ2

N ·min(c− 1, r − 1)
,

with µ0 (resp. µ1) the means for the first (resp. second) populations, N0

(resp. N1) their respective cardinalities, σ0 (resp. σ1) their respective standard
deviations, N the total number of observations, and c (resp. r) the number of
columns (resp. rows) in the contingency table. French Health Authorities consider
that having an SMD below 10% after correction validates the bias correction
method. We use the same criterion in our experiments.



Improving Bias Correction Standards 7

2.5 Contribution: Validating ATE and matching with a new metric

ATE is simply the difference between the average effect in both populations.

ATE(Y0, Y1) = E [Y1]− E [Y0] . (2)

The ability of a PSM to retrieve the true ATE can only be assessed using
synthetic tasks or through literature on real datasets [16]. There exists no method
to select the best technique for the specific task being studied. We propose
achieving this by generating artificial matching tasks using the studied data.
These tasks replicate biases similar to those in the original task but with known
ATE. We posit that an approach’s ability to recover the known ATE in these
artificial tasks measures its effectiveness in retrieving the ATE in the original task.
This procedure evaluates the entire matching process, including the interaction
between propensity estimation and matching. We term this new metric A2A.

Note that in this manuscript, we make a clear distinction between two types
of synthetic problems: artificial tasks, which are derived from a homogeneous
population and possess a null ATE, used for A2A computation, and synthetic
tasks, where we simulate an entire matching problem with a known ATE to
evaluate matching methods. We will maintain this terminology throughout the
rest of the manuscript to differentiate between these two types of scenarios.

Artificial task from real world data The core idea of our work is to establish
a matching task with a predetermined outcome. We suggest partitioning a sub-
population uniformly, for example controls X0, into two subsets X

(0)
0 and X

(1)
0 .

As both subsets originate from the control population, we can ascertain that the
treatment effect remains consistent across both, leading to an estimated ATE of
zero post PSM.

Selecting subsets. To assess the PSM method’s efficacy in addressing the reference
task, we design our artificial tasks to mimic the biases present in the reference
scenario. We select subsets and ensure their unadjusted ATE matches that of the
reference task, as shown in Equation 4a, while also enforcing equivalent initial
SMD conditions, as illustrated in Equation 4b. Since the artificial task uses half
the dataset, we introduce only half the biases to avoid making it too challenging
and ensure a good spread of scores. This adjustment doesn’t impact the final
method rankings. Lastly, we determine the cardinality of the two subsets to be
proportional to that of the reference task, as indicated in Equation 3b.

Thus, selecting subsets to match boils down to solving the following optimiza-
tion problem:{

X
(0)
0 , X

(1)
0

}
← argmin

{X(0)
0 ,X

(1)
0 }
L
(
X, Y,

{
X

(0)
0 , X

(1)
0

})
, (3a)

s.t. X(0)
0 , X

(1)
0 ⊆ X0, X

(0)
0 ∩X

(1)
0 = ∅,

|X0|
|X1|

=
|X(0)

0 |
|X(1)

0 |︸ ︷︷ ︸
Same size ratio

. (3b)
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where,

L
(
X, Y,

{
X

(0)
0 , X

(1)
0

})
=

1

2
ATE(Y0, Y1)︸ ︷︷ ︸
reference task

−ATE
(
Y

(0)
0 , Y

(1)
0

)
︸ ︷︷ ︸

artificial task


2

(4a)

+

1

2
SMD(X0, X1)︸ ︷︷ ︸

reference task

− SMD
(
X

(0)
0 , X

(1)
0

)
︸ ︷︷ ︸

artificial task


2

. (4b)

Where X
(0)
0 , resp. X(1)

0 , represents our artificial control, resp. treated, popu-
lation. Without losing generality, we assume |X0| ≥ |X1|. Ultimately, we obtain
a task similar to the original but with a known ATE of 0.

This set building task is easier to solve than PSM and there as it allows
for the free swapping of samples between populations. Thus it does not require
sophisticated methods. Due to the absence of a well-defined gradient in the
optimization problem, we use a hill-climbing method for minimization, as detailed
in Algorithm A.1. In our experiments, the algorithm converged within seconds,
making a more complex approach, i.e., simulated annealing, unnecessary. Also,
this method ensures non-overlapping subsets by construction and injects diversity
into our artificial tasks as it reaches local minimums, while other methods aim
for the global one.

A2A: A new metric to assess the best performing PSM pipeline. Identifying the
best method involves minimizing the difference in ATE measured on the matched
populations, Ŷ (0)

0 and Ŷ
(0)
1 :

A2A :=
∣∣∣ATE

(
Ŷ

(0)
0 , Ŷ

(1)
0

)∣∣∣ . (5)

We call this metric A-to-A, or A2A for short, reminiscently of the A/B test
wording, since both populations used in the task come from the A population.
The closer it is to zero, the better. To obtain the A2A score, we compute 100
bootstraps of the entire A2A process, from task creation to ATE estimation,
on the larger population, whether control or treated, and take the mean of the
resulting values. Unlike SMD, A2A is a relative metric: Lower values indicate
better performance, but there is no guarantee that the debiasing problem is
solvable, making it impossible to set a fixed threshold like SMD.

Combining SMD and A2A Since SMD is an absolute value, it allows for the
use of a fixed threshold for method selection. In contrast, A2A is inherently relative
and cannot use a fixed threshold. In order to combine both metrics in a single
method selection process, we tested three strategies. The most straightforward,
Min A2A, selects the best performing matching in terms of A2A among those
deemed valid by SMD. For fairness, we added its counterpart Min SMD. The
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other two strategies are more permissive, selecting a set of valid PSMs similar
to SMD thresholding. SMD×A2A relies on an algorithmic approach, applying
DBScan [3] to cluster methods based on their SMD and A2A scores. Selecting
the best methods boils down to keeping the cluster that contains the PSM
with the lowest A2A score. The Pareto method, stemming from multi-objective
optimization, selects the Pareto optimal PSM according to both A2A and SMD,
among PSM deemed valid by SMD.

2.6 Contribution: Popmatch python package

The most commonly used implementation of PSM algorithms is the R package
MatchIt [20]. While a Python counterpart exists, PsmPy [9], it includes only a
single matching method. To improve reproducibility and broaden accessibility for
Python-based data scientists, we introduce popmatch, a package that includes the
original implementation of PsmPy and a Python interface to the methods offered
by MatchIt. The code for downloading tasks, performing PSM selection, method
evaluation, and all the experiments in this paper is available and reproducible.

2.7 Experimental setup

For each task, as required for A2A computation, we create 100 bootstrapped
artificial tasks. We also use these tasks to compute metrics and gain insights, as
described in this section. Since our datasets are tabular and our algorithms are
easily tractable, all experiments can be completed within a few hours.

Because MatchIt’s propensity estimation and matching are tightly linked,
we did not separate them. We retained methods that ran without errors on all
bootstraps and are closest to 1-to-1 matching, specifically nearest and optimal,
along with propensity score estimation methods GLM, GAM, Elasticnet, Rpart,
CBPS, and Bart7. On the Python side, we combined LR, CLR, and RF propensity
estimation methods with PsmPy’s matching.

3 Results

3.1 Validating propensity scores

As explained in Section 2.3, propensity estimation is considered valid if the
overlap between the two distributions is at least 50%. Table 2 shows these ratios
and indicates whether each method meets the threshold.

Regarding model validity, we first observe that applying the logit link, a
recommended measure enabled by default in PsmPy, tends to yield invalid
propensity models. Second, PsmPy’s CLR achieves remarkable results compared
to LR and is the only method able to yield valid models on the Horse and
NHANES datasets. Although this is clearly the optimal choice, we keep all
models without logit link for the rest of our analysis.
7 The MatchIt package refers to “distance” as a method to estimate propensity scores.
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Table 2. Overlap ratio of propensity scores depending on models and datasets. Colored
cells indicate scores below 0.5. Bold numbers indicate the largest overlap row-wise.

Transform None Logit

Model LR RF CLR LR RF CLR

Groupon 0.75 0.70 0.67 0.25 0.27 0.26
Horse 0.51 0.29 0.84 0.18 0.28 0.19

NHANES 0.47 0.46 0.83 0.12 0.00 0.19

Synth. data

#
co

nf
ou

nd
er

s

0 1.00 0.86 0.97 0.00 0.62 0.45
1 1.00 0.81 0.97 0.00 0.61 0.43
2 0.85 0.60 0.97 0.36 0.41 0.44
3 0.99 0.73 0.96 0.20 0.53 0.43
4 1.00 0.87 0.97 0.17 0.52 0.43
5 0.88 0.91 0.95 0.38 0.57 0.44
6 1.00 0.86 0.97 0.00 0.27 0.40
7 1.00 0.89 0.97 0.00 0.59 0.44
8 0.88 0.83 0.97 0.35 0.40 0.43
9 0.91 0.96 0.98 0.38 0.76 0.43
10 0.91 0.90 0.96 0.39 0.04 0.44

3.2 Assessing SMD as a performance evaluator

Having artificial tasks with known ATE provides an opportunity to evaluate
SMD’s ability to predict the performance of matching methods. We assess
this based on the correlation between SMD’s ranking and the ground truth.
Additionally, we assess the correlation with the magnitude of the correction
applied, i.e., the difference between the uncorrected ATE and the corrected one.
We use Kendall’s τ correlation score due to our limited assumptions about the
predicted ATE. As a sanity check, we compare it to a random ranking.

Table 3 shows that, as expected, the SMD ranking does not correlate with a
random one. Most correlations between SMD and the ground truth are between
0.1 and 0.2, indicating a weak correlation. However, SMD demonstrates a stronger
negative correlation with magnitude, revolving around -0.3 across most tasks.
As lower SMD values are better, this implies that SMD measures the extent
of correction rather than the accuracy or unbiasedness of the final result. This
behavior aligns with the expectation that feature differences decrease with cor-
rection. However, the challenge is finding the optimal balance, as overcorrection
can occur, leading to inaccuracies in the estimated effect.

3.3 Validity of matching methods

Table 4 presents results from real datasets, illustrating the trade-offs between
both metrics. Methods deemed invalid by SMD are marked in red. Our analysis
underscores the need for our approach: no single method consistently outperforms
all others, making model selection essential.
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Table 3. Ranking based correlation between SMD and the amount of correction applied,
the ground truth, and random values as sanity check.

Correction magnitude Ground truth Random

Dataset Kendall’s τ pValue Kendall’s τ pValue Kendall’s τ pValue

Groupon -0.30 ± 0.58 0.02 0.20 ± 0.45 0.05 -0.00 ± 0.16 0.51
Horse 0.05 ± 0.30 0.34 0.05 ± 0.26 0.39 0.00 ± 0.15 0.56

NHANES -0.01 ± 0.56 0.11 0.39 ± 0.28 0.16 0.01 ± 0.17 0.53

Synth. data

#
co

nf
ou

nd
er

s

0 -0.39 ± 0.27 0.16 0.17 ± 0.31 0.31 0.01 ± 0.18 0.48
1 -0.35 ± 0.27 0.14 0.16 ± 0.26 0.33 0.01 ± 0.17 0.52
2 -0.39 ± 0.22 0.11 0.18 ± 0.23 0.32 0.01 ± 0.17 0.50
3 -0.40 ± 0.21 0.11 0.20 ± 0.26 0.34 -0.02 ± 0.17 0.49
4 -0.31 ± 0.31 0.14 0.15 ± 0.23 0.39 -0.00 ± 0.17 0.48
5 -0.35 ± 0.26 0.14 0.14 ± 0.20 0.41 0.01 ± 0.19 0.44
6 -0.40 ± 0.26 0.11 0.19 ± 0.23 0.31 0.02 ± 0.18 0.49
7 -0.30 ± 0.31 0.22 0.12 ± 0.24 0.36 -0.02 ± 0.16 0.47
8 -0.39 ± 0.31 0.15 0.11 ± 0.19 0.41 -0.01 ± 0.17 0.50
9 -0.32 ± 0.27 0.14 0.12 ± 0.23 0.33 0.02 ± 0.18 0.45
10 -0.30 ± 0.30 0.18 0.08 ± 0.24 0.38 -0.01 ± 0.17 0.49

We also observe that the metrics are complementary. For instance, ElasticNet
and Rpart are identified as the best by A2A for Groupon but are invalid by SMD,
while GAM and GLM show a similar pattern for Horse. Conversely, GAM and
GLM are rated best by SMD for Groupon and NHANES but are not top-rated
according to A2A. This trade-off is illustrated in Figure B.3.

Regarding matching methods, Bipartify stands out as the only method provid-
ing valid matches according to SMD for all datasets, although only one model is
selected as the best for NHANES. Overall, PsmPy’s CLR offers the best trade-off
between metrics, despite narrowly failing to have a valid model selected for Horse.

3.4 Combining SMD and A2A: A better matching method evaluation

As demonstrated, model dependence can result in significant variance in the
estimations of models deemed valid. We report this variance as the range between
the highest and lowest ATE estimations among valid PSM methods, with a smaller
range being preferable. Since Min A2A and Min SMD select only one model each,
their range is null. Secondly, we measure the average error of validated models
on synthetic tasks with known ground truth.

Table 5 demonstrates that SMD×A2A and Min A2A, which prioritize A2A,
lead in terms of range and error when the number of confounders is low. As
the number of confounders increases, Pareto becomes the best among methods
selecting multiple PSMs, while Min SMD consistently outperforms the others.

A significant challenge in bias correction is its one-shot nature, where there
is no room for error. Thus, a method’s reliability is judged by its weakest
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Table 4. SMD and A2A for valid matching methods on real datasets.Red cells indicate
results considered invalid according to SMD.

SMD A2A

Matching Groupon Horse NHANES Groupon Horse NHANES

Optimal
ElasticNet 0.118 0.128 0.046 84.327 0.036 0.002
Rpart 0.164 0.151 0.070 88.880 0.038 0.003
CBPS 0.052 0.117 0.016 118.526 0.036 0.006
Bart 0.034 0.106 0.024 145.374 0.053 0.003
GAM 0.026 0.115 0.015 220.050 0.035 0.003
GLM 0.026 0.115 0.015 220.050 0.035 0.003

Bipartify
RF 0.051 0.077 0.044 588.262 0.043 0.002
LR 0.039 0.086 0.032 624.086 0.048 0.001
CLR 0.054 0.076 0.056 834.433 0.047 0.002

PsmPy
CLR 0.026 0.107 0.028 292.465 0.037 0.004
RF 0.051 0.179 0.166 1491.992 0.039 0.001
LR 0.043 0.158 0.165 1597.057 0.041 0.003

performance. Both Min A2A and Min SMD excel in their respective domains,
but they falter significantly on Synthetic 3 (Min SMD) and Synthetic 6 (Min
A2A). Overall, Pareto strikes the best balance, making it the most reliable PSM
selection method.

On real datasets, Pareto achieves the best range for Groupon and slightly im-
proves over SMD for NHANES, while SMD×A2A excels for Horse and NHANES.
Based on these observations, we hypothesize that Groupon likely has more
confounders.

4 Discussion

Applying PSM is not inherently challenging for a trained practitioner. However,
the current SMD-based validation is too lenient, allowing multiple methods
with varying ATEs to be considered valid. This situation forces practitioners
to narrow their method search and justify decisions to authorities, who must
understand and evaluate the study, potentially challenging choices due to the
absence of established best practices for selecting propensity computation methods.
Furthermore, without rigorous reporting standards, errors or data manipulation
can go unnoticed, potentially leading to poor decisions.

A2A effectively reduces the variance in estimated ATEs without compromising
accuracy. We have observed that SMD excels at estimating the amount of bias
correction applied and measuring ATE, especially in the presence of confounders,
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Table 5. Metric-based performance of PSM on real and artificial tasks. Range of ATE
values represents the difference between the maximum and minimum ATE across valid
methods. For synthetic tasks with known ATE, the mean squared error is reported per
method. Since Min A2A and SMD select only one PSM, their range is 0 and not shown.

Range of ATE values ATE estimation error

Dataset SMD
SMD
×A2A

Par-
eto SMD

SMD
×A2A

Par-
eto

Min
A2A

Min
SMD

Groupon 1417 1176 659
Horse 0.014 0.000 0.014 Real ATE unknown
NHANES 0.022 0.000 0.005

Synth. data

#
co

nf
ou

nd
er

s

0 0.067 0.032 0.031 0.054 0.022 0.035 0.063 0.006
1 0.099 0.003 0.003 0.070 0.043 0.045 0.039 0.052
2 0.099 0.013 0.013 0.063 0.043 0.046 0.030 0.058
3 0.122 0.079 0.094 0.069 0.062 0.066 0.028 0.103
4 0.096 0.046 0.012 0.059 0.060 0.046 0.041 0.039
5 0.087 0.064 0.018 0.057 0.057 0.026 0.013 0.039
6 0.095 0.000 0.028 0.066 0.094 0.063 0.094 0.049
7 0.067 0.043 0.033 0.041 0.046 0.037 0.074 0.030
8 0.046 0.029 0.007 0.034 0.034 0.030 0.035 0.025
9 0.079 0.070 0.038 0.049 0.053 0.043 0.093 0.019
10 0.078 0.038 0.032 0.052 0.051 0.030 0.023 0.044

where propensity and outcome are explained by the same covariates. However,
its weaknesses emerge when the factors explaining the outcome and the selection
are disjoint, particularly when the number of confounders is low. In these cases,
A2A proves its usefulness through its measurement of ATE on artificial tasks.
This difference makes sense if we consider that propensity-based correction are
only able to accurately balance covaraites that are linked to selection. In the
presence of confounders, correcting propensity often results in well-corrected
ATE. However, when ATE is influenced by covariates unrelated to propensity,
A2A becomes crucial in selecting models that provide the most accurate ATE
correction. This explains A2A’s relative nature. While each method excels in its
domain, combining them in a Pareto optimal approach ensures a stable model
selection method, effective regardless of the number of confounders.

The best PSM pipeline. While this is not the primary objective of our study, we
conducted comparisons of matching methods on our tasks. The main finding is
that applying logit on predicted probabilities, or using the emphnearest matching
in MatchIt, results in models that are considered invalid based on the SMD.
PsmPy [9] demonstrated superior performance compared to MatchIt [20] without
identifying a fundamental cause. Our study, which integrates all methods into a
single package, reveals that this may be due to CLR, PsmPy’s block-based model
calibration. CLR shows significantly better overlap in propensities (Table 2) and
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improved metric performance on real datasets, particularly Groupon (Table 4).
This motivates the integration of CLR into MatchIt for further experiments.

Towards an Automated Pipeline and Benchmark for PSM. This work introduces
an automated pipeline capable of performing PSM that satisfies all the require-
ments of the French Health Authorities. Such a standardized automated baseline
could provide a valuable foundation for expert discussions between authorities
and applicants. Running it serves as a proof of good faith, and health authorities
may request it when further validation is required. This also paves the way for
the development of PSM comprehensive benchmarks.

Conclusion. Propensity-based methods can compensate for selection bias based
on given covariates. We have shown that SMD effectively evaluates these methods
for this specific purpose. Incidentally, they also provide good compensation for
causal effect estimation when the covariates involved in outcome estimation
are the same as those in selection, i.e., they are confounders. However, when
covariates are not confounders or in the presence of mixed effects, SMD may fail
to select the best method, and propensity correction might be inadequate.

This study introduces A2A, a new metric that offers insight into bias correction
by evaluating the entire matching pipeline, including target effect estimation,
on the data at hand. A2A evaluates a correction method based on its outcome
correction capability, which, to our knowledge, is a novel approach. In scenarios
with a low number of confounders, A2A is superior to SMD for selecting the best
matching method. Since the number of confounders can be hypothesized but not
definitively determined, it is challenging to identify the most accurate metric.
To address this, we propose combining them with a Pareto optimal selection to
leverage the strengths of both metrics and minimize estimation error.

Limitations. Although promising, our study would benefit from replication on
a broader range of datasets to generate more insights and improve the existing
pipeline, in particular by replacing DBScan by a simpler and more interpretable
method. Lastly, this study lays the groundwork for future research. If this
analysis is limited to PSM, the same strategy can be applied on other bias
correction techniques such as Inverse Propensity Weighting. Additionally, A2A
currently functions as a relative metric for refining PSM selection, necessitating
the computation of all pipelines to identify the best ones. Our goal is to develop
an absolute metric usable with a threshold, similar to SMD. Furthermore, the
scheme behind A2A could potentially be adapted to find weights, complementary
to propensity, that allows for a better correction of the ATE.
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A Algorithms

Let xj be the jth row of X.

Data: Data ({X0, X1} , Y ), cluster membership probabilities p ∈ [0, 1]2, loss
function L, number of iterations K.

cj ←Assign xj ∈ X0 to a cluster at random following p, ∀j ∈ {0, . . . , |X0|};
Zh ← {xj ∈ X0 : cj = h, ∀j ∈ {0, . . . , |X0|}}, where h = {0, 1};
lcurrent ←L

(
X, Y,

{
Z(0), Z(1)

})
(evaluate using Eq. 4);

for i← 1 to K do
j, k ←Draw (j, k) ∈ {0, . . . |X0|}2 at random with cj ̸= ck
cj , ck ← ck, cj (swap cluster assignment)
Zh ← {xj ∈ X0 : cj = h, ∀j ∈ {0, . . . , |X0|}}, where h = {0, 1};
lnew ← L

(
X, Y,

{
Z(0), Z(1)

})
if lnew < lcurrent then

lcurrent ← lnew

else
cj , ck ← ck, cj (swap cluster assignment)

end
end

return
{
Z

(0)
0 , Z

(1)
0

}
(selected subsets/clusters);

Algorithm A.1: Selecting subsets to match by Hill-Climbing clustering
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B SMD vs. A2A

This figure illustrates the trade-off between the two metrics. It’s challenging to
determine the superior method among Bipartify LR, and GLM/GAM solely from
this plot. Hence, we opt for the Pareto optimal selection of methods. PsmPy’s RF
could potentially be considered Pareto-optimal, but it is effectively eliminated
because its SMD exceeds 10

0.001 0.002 0.003 0.004 0.005 0.006
A2A

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

SM
D

Bart

Bipartify LR

Bipartify CLR

Bipartify RF

CBPD

ElasticNet

GAM
GLM

PsmPy LR

PsmPy CLR

PsmPy RF

RPart

Fig. B.3. Values for SMD and A2A for the task NHANES. Methods above 0.1 in SMD
are invalid. Bipartify LR and GLM form the Pareto optimum according to both metrics.
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