
1

Brain-Computer Evolutionary Multi-Objective
Optimization (BC-EMO): a genetic algorithm

adapting to the decision maker
Roberto Battiti, Fellow, IEEE, and Andrea Passerini

Abstract—The centrality of the decision maker (DM) is widely
recognized in the Multiple Criteria Decision Making community.
This translates into emphasis on seamless human-computer
interaction, and adaptation of the solution technique to the
knowledge which is progressively acquired from the DM.

This paper adopts the methodology of Reactive Search Op-
timization (RSO) for evolutionary interactive multi-objective
optimization. RSO follows to the paradigm of “learning while
optimizing”, through the use of online machine learning tech-
niques as an integral part of a self-tuning optimization scheme.

User judgments of couples of solutions are used to build robust
incremental models of the user utility function, with the objective
to reduce the cognitive burden required from the DM to identify
a satisficing solution. The technique of support vector ranking is
used together with a k-fold cross-validation procedure to select
the best kernel for the problem at hand, during the utility
function training procedure. Experimental results are presented
for a series of benchmark problems.

I. INTRODUCTION

MANY evolutionary algorithms have been developed in
the last years, starting at least from the eighties [1],

to solve multiobjective optimization problem (MOOPs). A
MOOP can be stated as:

maximize f(x) = {f1(x), . . . , fm(x)} (1)
subject to x ∈ Ω (2)

where x ∈ IRn is a vector of n decision variables; Ω ⊂ IRn

is the feasible region and is typically specified as a set of
constraints on the decision variables; f : Ω → IRm is made
of m objective functions which need to be jointly maximized.
Objective vectors are images of decision vectors and can be
written as z = f(x) = {f1(x), . . . , fm(x)}. Problem 1 is ill-
posed whenever objective functions are conflicting, a situation
which typically occurs in real-world applications. In these
cases, an objective vector is considered optimal if none of
its components can be improved without worsening at least
one of the others. An objective vector z is said to dominate
z′, denoted as z � z′, if zk ≥ z′k for all k and there exists
at least one h such that zh > z′h. A point x̂ is Pareto optimal
if there is no other x ∈ Ω such that f(x) dominates f(x̂).
The set of Pareto optimal points is called Pareto set (PS). The
corresponding set of Pareto optimal objective vectors is called
Pareto front (PF).

R. Battiti and A. Passerini are with Dipartimento di Ingegneria e Scienza
dell’Informazione, Università di Trento, Via Sommarive, 14 - 38050 Povo
(Trento) - Italy (e-mail: {battiti,passerini}@disi.unitn.it).

Evolutionary algorithms (EAs) work with a population of
tentative solutions and they are therefore ideally suited to
search for a set of Pareto-optimal solutions to be presented to
the decision maker (DM). In this paradigm, evolutionary mul-
tiobjective optimization algorithms (EMOAs) aim at building
a representative set of points near the Pareto front.

Some of the most successful EMOAs [2], [3], [4] rely on
Pareto dominance classification as a fitness measure to guide
the selection of the new population. To adequately cover the
PF, two important criteria are the proximity of the points to
the PF and the diversity and spread of solutions, aiming at a
uniform distribution on the PF. The work in [5] highlights
a tradeoff between proximity and diversity that cannot be
solved a priori without considering the specific demands of
the decision maker. Furthermore, the definition of “uniform
distribution” hides the fact that uniformity depends on the
metric, on the scaling of objective values, in other words on
the user preferences which cannot be fixed a priori [6].

The work [7] indicates that resorting to Pareto dominance
classification to assign fitness becomes ineffective for an
increasing number of objectives and proposes a refined pref-
erence ordering based on the notion of order of efficiency [8].
The reason is that the proportion of Pareto-optimal elements
in a set grows very rapidly with the dimension m, so that most
solutions become in practice indistinguishable unless other
criteria are added.

When the interaction with a human user is considered, the
assumption that a typical DM likes the idea of being presented
with hundreds or thousands of representative solutions on
a multi-dimensional Pareto front is very far from reality.
Although creating this representative set is appealing from a
mathematical and research-oriented point of view, the reality
of applied decision making must consider the following crucial
issues:
• Bounded rationality and information bottleneck. The typ-

ical DM (being a typical human person) cannot deal
with more than a very limited number of information
items at a time. After Simon’s seminal papers in the
fifties, aspects of bounded rationality permeate theories
of choice, see for example the review in [9]. Human
beings develop satisficing decision procedures, which are
sensible given their constraints regarding human memory
and information processing capabilities.

• Learning on the job. Most DMs cannot or do not like to
explicitly formulate their objectives at the beginning. This
is already recognized in the MOO formulation, where

2

a combination of the individual objectives into a single
preference function is not executed: knowledge elicitation
stops at the building blocks given by the individual zk’s.
Interactive MOO can be used to iteratively build an ap-
proximation of the DM’s utility function after specifying
a suitable form, for example a linearly weighted combina-
tion of the objectives. In interactive MOO, learning by the
DM happens in coordination with a computer-supported
solution processes. According to [10], through interactive
MOO the DM is building a conviction of what is possible
and confronting this knowledge with her preferences, that
also evolve.

• Simple questions, qualitative judgments. The number of
questions that have to be asked to the DM before a satis-
factory solution is identified is a crucial performance in-
dicator of interactive methods. This demands for selecting
appropriate questions, for extracting as much information
as possible from the answers, for building approximated
models which may reduce the need to bother the DM.
The complexity of the questions is also an issue. All DMs
can be assumed to produce qualitative judgments, like “I
prefer solution A to solution B.” Asking for quantitative
evaluations of the kind “By how much do you prefer A
over B?” is in some cases inappropriate, artificial, or even
impossible. Asking for explanations of choices is even
more difficult: most DM are typically more confident in
judging and comparing than in explaining.

• Uncertainty and inconsistency. The assumption that a
fixed, deterministic and error-free preference structure of
the DM is available is often not realistic. Imprecisions,
contradictions, changes of judgment over time are the
characteristics of most human decision processes.

The above issues demand a shift of paradigm, from building
a set of solutions which is representative of the true PF, to the
interactive construction of a sequence of solutions where the
DM is a crucial learning component in the optimization loop,
a component characterized by limited rationality and scarce
question-answering capabilities.

The objective of our long-term investigation is the system-
atic use of machine learning techniques for online learning
schemes in optimization processes. In particular, the objective
of Reactive Search Optimization (RSO) [11] is to design
problem-solving schemes with an internal online feedback
loop for the self-tuning of critical parameters. Internal pa-
rameters and algorithmic choices are adapted to the particular
instance being solved. Our approach is somehow related to
the Brain Computer Interfaces (BCI), proposed for example
in [12], based on direct connection with brain signals like
EEG. However, we assume here that the “whole brain” is
in the loop with both sub-symbolic and symbolic reasoning
capabilities.

In the context considered in this work, the objective of the
learning process is the approximated construction of a utility
function U to be optimized by the DM, who is also the source
of learning signals. As in the traditional MOO context, the
function to be optimized is not completely unknown like in
a black-box context (see for example the response surface
methodology and the related kriging and design of experiments

approaches [13]), but is to be modeled after starting from the
building blocks zk characterizing positive features of a generic
solution. Preference models are built from the DM input
by using the support vector ranking method. The functional
form of the preference function is not fixed a priori, like it
is in the weighted sum or Tchebycheff approaches (see for
example [14] for a clear explanation of scalarization methods)
but it is itself learnt during the process in a reactive fashion.

The rest of the work is organized as follows. The problem
of modeling user preferences for interactive MOO and our
proposed machine learning approach are discussed in Sec-
tion II. The support vector ranking method for learning user
preferences is presented in Section III. The overall algorithm
is detailed in Section IV and the related works are discussed
in Section V. An extensive experimental evaluation is reported
in Section VI. Finally, possible directions for future research
are highlighted in Section VII and conclusions are drawn in
Section VIII.

II. BRAIN-COMPUTER OPTIMIZATION: LEARNING USER
PREFERENCES IN EMO APPROACHES

Solving a MOO problem typically means providing a hu-
man decision maker with the solution she believes optimal
according to a certain utility criterion allowing her to choose
among competing Pareto-optimal alternatives. This utility cri-
terion can of course be partially inconsistent, difficult to
formalize and subject to revision according to the solutions
provided by the optimization algorithm. Approaches to MOO
can be roughly divided into the two broad categories of
non-interactive and interactive ones [15]. The former can be
further divided into a priori approaches, where the decision
maker is required to formulate her preferences in advance,
and a posteriori approaches, where the algorithm recovers a
representative subset of the Pareto-optimal set from which the
user selects the preferred solution. A priori methods have the
drawback of requiring the user to pre-specify her preferences,
for instance as a set of weights on different objectives, which is
typically rather hard for a human decision maker. A posteriori
methods, on the other hand, imply a laborious selection among
a large set of candidate solutions. Interactive approaches try
to overcome some of these difficulties by keeping the user
in the loop of the optimization process and progressively
focusing on the most relevant areas of the Pareto front, guided
by the user feedback. The focus on fusing the capabilities
of evolutionary computation (EC) with human evaluations
reaches an extreme point with the interactive EC proposed
in [16], where the fitness function is replaced by a human
user. Our investigation follows an intermediate point, where
knowledge of the objectives zk is assumed a priori, and the
DM is queried in order to build an explicit and robust nonlinear
model of her preferences, to be used as an integral component
of the problem-solving process.

Formalizing user preferences into a mathematical model is
a non-trivial task. A model should be able to capture the
qualitative notion of preference and represent it as a quan-
titative function, while retaining Pareto-optimality properties.
The simplest possible model is a linear function, in which

3

(positive) weights encode the relative importance of different
objectives:

U(z) =
m∑
k=1

wkzk

However, its appropriateness is rather questionable [17].
Indeed, whenever objective functions correlate with each other,
the most intuitive approach of giving the highest weight to the
most important criterion can lead to completely unsatisfactory
solutions [18], [19]. Furthermore, assuming that satisfaction
increases linearly when objective function values increase is
not straightforward. Relying on the concept of decreasing
limiting performance from mathematical economics, Podi-
novskii [20] argues that improvements on poorly satisfied
objectives should be considered more relevant than equally
sized improvements on better satisfied ones. Most approaches
generalize the linear utility function to a weighted-Lp metric
of the following form:

U(z) = −

(
m∑
k=1

(wk|z∗k − zk|)p
)1/p

(3)

where z∗ is a reference ideal objective vector obtained by
separately maximizing each objective function subject to the
feasible region, i.e., z∗k = maxx∈Ω fk(x). Let’s note that the
weights in equation (3) are raised to the power p as well,
so that it will transform into equation (4) below. A popular
choice in this setting is that of the Tchebycheff (or L∞) metric,
leading to the following augmented weighted Tchebycheff
program (AWTP):

min
x,α

α+ ρ

m∑
k=1

(z∗∗k − zk) (4)

subject to:
wk(z∗∗k − zk) ≤ α

w ∈ IRm, wk ≥ 0,
m∑
k=1

wk = 1

fk(x) = zk, x ∈ Ω
k = 1, . . . ,m

where z∗∗ is the utopian objective vector obtained adding a
small positive scalar to the ideal vector z∗. Let’s comment:
if ρ is set to zero, minimizing α amounts to minimizing
the maximum weighted distance wk(z∗∗k − zk) between each
individual objective and the utopian target. The augmentation
by the term ρ

∑m
k=1(z∗∗k − zk), with ρ being a small positive

scalar, generates properly Pareto-optimal solutions, a more
robust subset of Pareto points (a finite improvement in one
objective is possible only at the expense of a reasonable
worsening in other objectives).

The interactive weighted Tchebycheff procedure
(IWTP) [21] consists of solving multiple AWTP, one
for each choice of weight vectors w, in order to present the
DM with a small set of well-spaced, representative sample
solutions. The DM is asked to select the most preferred
one among the proposed solutions, a new set of weights

is produced which is consistent with the DM choice. Then
a new set of solutions is generated and the procedure is
repeated until the DM is satisfied with the results. A more
recent paper using a Tchebycheff utility function [22] focuses
on minimizing the number of questions asked to the DM.
Pairwise comparisons of solutions are used to generate
constraints on the Tchebycheff weights and to identify
multiple disjoint regions in weight space. Representative
weights from the different regions are then generated to
search for new challenger solutions to present to the DM.

Given the critique for linear weighting schemes, related
also to the nonlinear preference of ”compromise” solutions
which is characteristic of many human decision activities, we
explicitly consider nonlinear dependencies in this work. For
instance, a generic polynomial utility function such as:

U(z) =
m∑
i=1

wizi +
m∑
i=1

∑
j≥i

wijzizj

+
m∑
i=1

∑
j≥i

∑
h≥j

wijhzizjzh + · · ·

+
m∑
i=1

· · ·
∑

k≥m−1

wi···kmzi · · · zkzm (5)

would account for strong non-linear relations between objec-
tives. However, we do not specify a priori a certain form
for the utility function, but rather employ a Reactive Search
Optimization scheme to determine the appropriate model to
be used while the algorithm runs on a specific instance. The
selection of a linear versus nonlinear model as well as the type
of nonlinear model is decided in an automated way, depending
on the user interaction and on the preference for simple models
explaining the data which is the bread and butter of modern
machine learning techniques. Our solution aims at:

1) being able to learn an arbitrary utility function from
examples of preference information interactively provided by
the DM

2) requiring DM intervention only through holistic judg-
ments (comparisons of complete solutions instead of specifi-
cation of detailed parameters like weights of trade-offs), by
ranking sets of competing instances or specifying pairwise
preferences between candidate solutions

3) naturally accounting for incomplete, imprecise and con-
tradictory feedback from the DM

4) directly employing the learned utility function in order
to guide the search for refined solutions

We rely on an adaptation of the well-known support vector
machines [23] classification algorithm to preference learning
in order to learn the utility function from user preference
information. An EMO algorithm alternates a search phase,
guided by a fitness measure based on the learned utility
function, and a refinement phase where the DM is queried
for feedback on candidate solutions and the utility function is
updated according to such feedback.

4

III. LEARNING TO RANK

Given a sequence of competing instances (z1, . . . , z`) ∈ Z`
and an order relation � such that zi � zj if zi should
be preferred to zj , a ranking (y1, . . . , y`) of the ` instances
can be specified as a permutation of the first ` natural
numbers such that yi < yj if zi � zj . Learning to rank
consists of learning a ranking function f from a dataset D =
{(z(i)

1 , . . . , z(i)
`i

), (y(i)
1 , . . . , y

(i)
`i

)}si=1, of s sequences with their
desired rankings. Different approaches have been proposed in
the literature to deal with ranking tasks, see [24] for a review.
A common approach consists of learning a utility function
U : Z → IR measuring the importance of the instance, with
the aim that U(zi) > U(zj) ⇐⇒ zi � zj . In the following
we focus on an effective solution for learning a utility function
based on suitable adaptations of the support vector machine
algorithm [25], [26], [27]. The solution naturally accounts for
situations in which only partial information on pairwise order-
ing is available for training. We start with a brief discussion
on support vector machines for classification [23] and extend
the formulation to handle ranking tasks.

A. Support vector classification

Let D = (zi, yi)si=1 be a training set of s binary labelled
examples, yi = 1 or yi = −1. Standard Support Vector
Machines [23] for classification learn a decision function
h(z) = sign (〈w, z〉+ b) trading-off fitting of the training
data with large margin separation of classes, by solving the
following optimization problem:

min
w∈Z,b∈IR, ξ∈IRs

1
2
||w||2 + C

s∑
i=1

ξi (6)

subject to:
yi(〈w, zi〉+ b) ≥ 1− ξi
ξi ≥ 0
i = 1, . . . , s

The first term in the minimization encourages a large margin
separation, with margin given by 2/||w||, while the second
term contains penalties ξi for examples i not separated with
the required margin (see Figure 1 for an example). The tradeoff
factor C has to be adapted to the data, for example a noisy
measurement process for z implies that margin errors ξi be
given a smaller weight (a smaller C value).

Whenever non-linear separation surfaces are needed in order
to obtain a satisfactory separation, examples are projected onto
a suitable higher dimensional feature space via a mapping
function Φ (see Figure 2) and the same optimization problem is
solved, simply replacing zi with Φ(zi). In the dual formulation
of the optimization problem, projected examples always occur
within dot products 〈Φ(zi),Φ(zj)〉. These can be replaced by
an equivalent kernel function k(zi, zj) = 〈Φ(zi),Φ(zj)〉 on
input examples which efficiently computes the dot product
without explicitly doing the projection, which can even be
infinite dimensional. The resulting decision function can be
represented as a linear combination of kernel functions on
support vectors: h(z) = sign

∑
zi∈SV αiyiK(zi, z). Kernel

MARGIN = 2
||w||

margin errors
(ξi > 0)

Fig. 1. Classification problem solved by support vector machines. The solid
line represents the separating hyperplane, while dotted lines are hyperplanes
with confidence margin equal to one. Black points are unbound SVs, grey
points are bound SVs and extra borders indicate bound SVs which are also
training errors. All other points do not contribute to the function to be
minimized. Dotted lines indicate the margin error ξi for bound SVs.

functions can be seen as similarity measures generalizing
dot products to arbitrary domains and allowing to decouple
learning algorithms from example representation. The above
decision function can be rationalized as follows: the final
decision is obtained from a linearly weighted combination of
the outputs yi for selected training examples, the weights being
influenced by the similarity between the current example z
and the training example zi. In this sense the use of kernels
is related to case-based or instance-based learning. Universal
kernels [28] are powerful classes of kernel functions which
can uniformly approximate any arbitrary continuous target
function. A popular class of universal kernels is the Gaussian
kernel:

K(z, z′) = exp(−γ||z− z′||2) (7)

where γ is a positive constant. Kernel functions for structured
data such as string, trees and graphs have been developed in
the literature. In some cases the “kernel trick” transforms the
computational complexity in a radical way, from practically
unaffordable scalar products to efficient computations. Details
on kernel machines can be found in several textbooks, e.g.,
see [29].

B. Support vector ranking

The SVM formulation can be easily adapted to learning
the utility function for ranking: U(z) = 〈w,Φ(z)〉. The
constant term b can be omitted because only differences of
U values matter for the ranking. Given a ranking dataset
D = {(z(i)

1 , . . . , z(i)
`i

), (y(i)
1 , . . . , y

(i)
`i

)}si=1, it suffices to im-
pose constraints on the correct pairwise ordering of instances
within a sequence: U(z(i)

h) > U(z(i)
k) ⇐⇒ y

(i)
h < y

(i)
k . The

resulting minimization problem can be written as:

5

Φ

Fig. 2. Higher dimensional feature space projection via mapping function Φ for non-linearly separable problem.

min
w∈Z, ξ∈IR∗

1
2
||w||2 + C

s∑
i=1

∑
hi,ki

ξi,hi,ki
(8)

subject to:

〈w,Φ(z(i)
hi

)〉 − 〈w,Φ(z(i)
ki

)〉 ≥ 1− ξi,hi,ki

ξi,hi,ki ≥ 0

hi, ki : y(i)
hi
< y

(i)
ki

i = 1, . . . , s

Note that the formulation allows to naturally account for ties
and partial rankings, as constraints are only included whenever
two examples should be ranked differently.

The problem is equivalent to the standard SVM formulation
in (6) if we consider examples as pairs δΦ(z(i)

hi
, z(i)
ki

) =
Φ(z(i)

hi
)−Φ(z(i)

ki
), all pairs labels as positive and no bias term

as it cancels out in the difference. In the dual formulation, the
utility function thus becomes a linear combination of kernel
functions on example pairs:

U(z) =
∑

(z
(i)
hi
,z

(i)
ki

)∈SV

αi,hi,ki

(
K(z(i)

hi
, z)−K(z(i)

ki
, z)
)

By noting that each example z(i)
j can appear multiple times

in the summation, depending on the number of constraints it is
involved in, we can rewrite the utility function more compactly
as a linear combination of kernel functions on examples:

U(z) =
∑

z
(i)
j
∈SV ∗

αi,jK(z(i)
j , z)

where:

αi,j =
∑

(z
(i)
hi
,z

(i)
ki

)∈SV

: z
(i)
j

=z
(i)
hi

αi,hi,ki
−

∑
(z

(i)
hi
,z

(i)
ki

)∈SV

: z
(i)
j

=z
(i)
ki

αi,hi,ki

therefore reducing the computational cost of calculating the
utility function.

IV. THE BC-EMO ALGORITHM

Support vector ranking has a number of desirable properties
making it a suitable candidate for learning user preferences.
First, it accepts supervision in terms of pairwise preferences,
a much more affordable request for a human decision maker
than a quantitative quality score. Second, it is well grounded
on learning theory: its trading off data fitting and complexity
of the learned hypothesis allows to effectively deal with noisy
observations, a situation which is quite likely to occur when
receiving feedback from a human user with only partial knowl-
edge on the domain at hand. Third, the ability to implicitly
project data onto a higher dimensional feature space via the
kernel trick provides the needed flexibility in order to best
approximate the underlying preference model of the specific
user. The polynomial value function in eq. (5), for instance,
can be easily implemented by an m-th degree inhomogeneous
polynomial kernel: K(z, z′) = (1 + 〈z, z′〉)m.

The problem boils down to learning the utility function from
examples of user preferences, and employing the learned func-
tion to guide the search for the globally optimal solution. The
most natural approach would be to turn the MOO problem into
a single objective optimization problem by directly optimizing
the learned utility function. However, this requires the learned
function to retain Pareto optimality, which is guaranteed if
the function has non-negative weights. This non-negativity
constraint cannot be easily incorporated into the general SVM
formulation while retaining the advantages of the kernel

6

trick. A simple and effective alternative can be conceived
when the preference function is employed in conjunction
with evolutionary optimization algorithms. EMOAs [2], [3]
typically rely on Pareto dominance classification as a fitness
measure to guide the selection of the new population. Previous
works [7] already highlighted that this choice can be rather
suboptimal for increasing number of objectives and proposed
a refined preference ordering based on the notion of order of
efficiency [8]. Here we exploit the same idea by replacing
order of efficiency with value of the learned utility function.
An unordered population combining parents and offsprings of
the current generation is sorted in steps by:

1) collecting the subset of non-dominated individuals in the
population

2) sorting them according to the learned utility function
3) appending to the sorted set the result of repeating the

procedure on the remaining dominated individuals.
Algorithm 1 describes this ranking procedure which clearly

retains Pareto optimality. The procedure is terminated as soon
as the desired set of s individuals is obtained. Any EMOA can
be equipped with such a preference ranking procedure in order
to guide the selection of the next population. Note that the
combined ranking according to dominance and utility func-
tion preference is employed whenever comparisons between
candidate individuals have to be made in creating the next
generation. Algorithm 2 describes the procedure of a generic
training iteration, which combines training or refinement of
the utility function and preference ranking according to the
learned function. Training consists of:

1) selecting a set of exa training individuals as the best
ones according to the current criterion, where the utility func-
tion is replaced by random selection (within non-dominated
individuals) at the first training iteration;

2) collecting pairwise preferences for these individuals from
the decision maker and adding them to the set of training
instances (empty at the first training iteration);

3) performing a kernel selection phase by a k-fold cross
validation procedure in order to choose the best kernel for the
problem at hand;

4) training the utility function on the overall set of examples
with the chosen kernel.

The learned utility function is then used to sort the remain-
ing set of candidate individuals.

The overall procedure, which we name BC-EMO as an
acronym for Brain-Computer Evolutionary Multi-Objective
Optimization, is described in Algorithm 3 for a generic EMO
algorithm. The algorithm parameters are: the number of al-
lowed training iterations (maxit), the number of training in-
dividuals for iteration (exa), the number of generations before
the first training iteration (gen1) and between two successive
training iterations (geni), a minimal performance requirement
for prematurely stopping the training phase (thres), the size of
population for the EMO algorithm (s). Additional parameters
can be required depending on the specific EMO algorithm em-
ployed, see the experimental section. The algorithm alternates
a training phase where the current utility function is updated
according to the DM feedback, and a search phase guided by
the preference ordering procedure. When either the maximum

Algorithm 1 Preference ordering based on utility function
1: procedure PREFORDER(Pi, U , s)

Input:
Pi unordered population
U utility function
s size of output population
Output:
Po ordered population

2: identify Pareto non-dominated individuals P ∗i in Pi
3: build Po ordering individuals in P ∗i according to U
4: if len(Po) ≥ s then
5: return first s elements of Po
6: else
7: collect Pareto dominated individuals P di ← Pi\P ∗i
8: if P di 6= ∅ then
9: P do ←PREFORDER(P di , U , s− len(Po))

10: concatenate the two lists Po ← Po + P do
11: end if
12: return Po
13: end if
14: end procedure

Algorithm 2 Training procedure at a generic EMO iteration
1: procedure TRAIN(Pi, Ui, s, exa)

Input:
Pi unordered population
Ui current version of the utility function
s size of output population
exa number of training individuals for iteration
Output:
Po ordered population
Uo refined version of the utility function
reso estimated performance of refined utility function

2: Ptr ← PREFORDER(Pi,Ui,exa)
3: obtain pairwise preferences for Ptr from the DM
4: sort Ptr according to user preferences
5: add Ptr to the current list of training instances
6: Choose best kernel K by k-fold cross validation
7: Uo ← function trained on full training set with K
8: reso ← k-fold cv estimate of function performance
9: P ∗o ← PREFORDER(Pi \ Ptr, Uo, s− len(Ptr))

10: Po ← Ptr + P ∗o
11: return Po, Uo, reso
12: end procedure

number of training iterations or the desired accuracy level are
reached, an additional search phase is conducted producing
the final ordered population.

Figure 3 shows an illustrative example of BC-EMO appli-
cation to a simple multiobjective 0/1 knapsack problem [30].
The setting consists of a set of items each one having a certain
weight and profit value, and a set of knapsacks with limited

7

Fig. 3. Example of BC-EMO application of multiobjective 0/1 knapsack problem with five items and two knapsacks, assuming a linear utility function U(z).
Items profits are: [0.81, 0.51, 0.07, 0.75, 0.71]

capacities. Items have to be assigned to knapsacks trying to
maximize the overall profit without exceeding knapsacks ca-
pacities and without assigning the same item to multiple knap-
sacks. This well-known combinatorial optimization problem is
NP-hard in general; we use it here for illustrative purposes and
defer its rigorous mathematic formulation to the experimental
section. First, the selected EMO algorithm generates a set of
candidate solutions as item assignments: the figure shows three
candidate solutions xj , each consisting of a binary assignment
for two knapsacks for each of the five available items. Each
solution is converted into an objective vector zj as the sum of
the profits of the selected items for each knapsack. Objective
vectors are passed to the DM who ranks them according to
her (unknown) utility function and returns the ordered list as
feedback. This feedback is converted into pairwise constraints
for the support vector ranking training procedure (eq. (8)).
After training, the predicted utility function is employed to
guide the search for novel candidate solutions. For simplicity
of presentation we dropped the dependency from the training
iteration (i in equation (8)) and considered a linear utility
function and a linear kernel (i.e. no feature mapping Φ).

Our BC-EMO algorithm is a generic formulation which
can be implemented on top of any EMO algorithm. In this

work we employed the NSGA-II [31] EMOA1. NSGA-II runs
in its original formulation, including the crowded-comparison
operator for guaranteeing a sufficiently diversified population,
for gen1 generations. Our preference model is then trained
according to the DM feedback and the modified preference
ordering procedure in Algorithm 1 replaces both the ordering
of the new population and the selection criterion of the
binary tournament selection operator. The crowding distance
mechanism is switched off at this point as we are interested
in directing the generation of new individuals in the most
interesting regions according to the DM preferences. The
preference learning module is based on the support vector
machine package SVMlight2.

Computational complexity of SVM [32] is between
O(N2

SV) and O(N3
SV) depending on the value of the regu-

larization parameter C, where NSV is the number of support
vectors. In the worst case, NSV is quadratic in the number of
instances for support vector ranking, as examples are pairs of
instances. However, as supervision is provided interactively by
the DM, the number of instances must be extremely limited,
making support vector ranking learning negligible with respect

1available at http://www.iitk.ac.in/kangal/codes.shtml
2available at http://svmlight.joachims.org/

8

Algorithm 3 The BC-EMO algorithm
1: procedure BC-EMO(maxit, exa, gen1, geni, thres, s)

Input:
maxit maximum number of allowed training iterations
exa number of training individuals for iteration
gen1 generations before first training iteration
geni generations between two training iterations
thres performance requirement to stop training
s size of population
Output:
P final ordered population

2: res← 0, it← 0, U ← RAND
3: run the plain EMO for gen1 generations
4: collect last population P
5: while it ≤ maxit ∧ res < thres do
6: P,U, res← TRAIN(P , U , s, exa)
7: run the EMO for geni generations
8: guided by PREFORDER with U
9: collect last population P

10: end while
11: run the EMO for remaining number of generations
12: guided by PREFORDER with U
13: return the final population P
14: end procedure

to collection of DM feedback. For instance, the whole set
of 4,800 experiments for the 10 0/1 Knapsacks problem
(for different random seed, number of training instances and
training iterations, see Section VI) run in 12 hours on an
Intel(R) Xeon(R) CPU at 2.80GHz, amounting to 9 seconds
per experiment on average.

Concerning the choice of algorithm parameters, maxit, exa
and thres can be selected by the DM depending on the effort
she is willing to put in providing feedback as well as depend-
ing on the desired solution quality. The number of training
iterations does not need to be fixed at the beginning: the DM
can choose whether to require a further training iteration by
comparing the ranking provided by the algorithm with her
own preferences. As a general guideline, a larger number
of instances on the first training iteration tends to improve
quality more than multiple training iterations. However, in a
real-world setting an adaptation of the preference of the DM
herself should be also accounted for, as will be discussed in
Section VII, and more complex active learning strategies can
be pursued [33]. The number of generations before the first
training iteration (gen1) should allow a reasonable coverage
of the Pareto front in order not to miss portions possibly
containing the DM preferred solutions; it should thus be of
the same order of the number of generations for a plain MOO
run on the same problem. The number of generations between
two training iterations (geni) should be small enough to avoid
a premature focus on a suboptimal search area, but sufficient
to collect a different set of solutions: it could actually be
automatically set by measuring the difference w.r.t the previous

training set. Parameters of the EMO algorithm depend on the
specific implementation employed: we used default values for
all parameters of NSGA-II. Finally, critical SVM parameters
should be adapted to the problem at hand: the choice of the
kernel for non-linear utility functions is already automated by
an internal cross validation strategy. The same strategy can be
employed to choose the regularization parameter C, possibly
including a decaying behaviour to progressively forget past
feedback (see Section VII). A full optimization of all algorithm
parameters is beyond the scope of this paper, but automated
approaches for critical parameter tuning of generic algorithms
were shown to be extremely effective [34] in practice.

V. RELATED WORK

Interactive multiobjective optimization has been an active
research area in the last decades. In the field of EMO [4], a
survey of preference-handling methods is presented in [35],
and a recent survey of interactive EMO algorithms is given
in [36]. The objective of this section is not to give an
exhaustive review of the different papers but to compare our
approach with some significant and related approaches dealing
with modeling user preferences and interacting with the DM.

Artificial neural networks have been used in a number of
works [37], [38], [39] to learn user preferences in an interactive
fashion. In the interactive FFANN procedure [37], a feed-
forward artificial neural network is trained to approximate the
user utility function using a sample of user evaluated non-
dominated solutions, and employed as the objective function
of a non-linear optimization problem. However, there is no
guarantee that the improved solutions found by the non-
linear optimization problem are non-dominated. FFANN were
later [38] used within an IWTP to replace the diversity
selection criterion with a user preference criterion as predicted
by the FFANN. While the resulting procedure is guaranteed to
always produce non-dominated solutions, the role of FFANN
is limited to halving the set of solutions to be presented to
the user at each iteration, and they cannot directly guide the
search procedure. Huang et al [39] developed an alternative
approach where a FFANN is directly employed to produce
refined weight vectors for the next AWTP. The network is
trained by using as inputs weight vectors and as outputs
the utility of the solution obtained by the AWTP with the
corresponding weight vector. An optimization problem is then
solved in order to determine the set of weights maximizing
the output of the trained network, and the obtained weights
are used in the next iteration of the IWTP.

While retaining the guarantee to produce non-dominated
solutions, our approach has two main advantages. First, the
IWTP based methods assume to be able to constraint the
search to the correct subspace by relying on a linear set of
weights, one for each objective. Our approach directly employs
the learned utility function to guide the search and can be
applied to highly non-linear combinations of objectives such
as those in eq. (5). By automatically tuning the kernel to the
problem at hand one can effectively approximate utility func-
tions of varying complexity. Second, our method can be trained
with pairwise preference supervision instead of quantitative

9

scores. As previous approaches pointed out [37], [38], pairwise
preferences can be converted into scores following the method
of the Analytical Hierarchical Process (AHP) [40]: a reciprocal
comparison matrix is constructed from the pairwise compar-
isons and the normalized principal eigenvector of the matrix
is computed. Each component of the normalized eigenvector,
which is also named priority vector in this context, can be
viewed as the score of the corresponding solution and used as
the desired target. However, while the procedure perfectly fits
the need to order a set of instances according to their pairwise
comparisons, a function trained to fit such scores on a certain
training set is not guaranteed to correctly generalize to unseen
instances. The function is required to match scores which
depend on the training set generating the matrix, while the
ranking constraints in problem (8) simply require the learned
function to correctly sort the examples.

A number of approaches exist combining interactive EMO
with pairwise preference information from the DM. Quan
et al [41] developed an approach based on the notion of
imprecise value function [42]. Pairwise preferences are trans-
lated into a set of constraints on the weights of a linear
combination of normalized objectives, which determines a
constrained subspace W . Two arbitrary solutions can be com-
pared by solving two linear programming problems, minimiz-
ing

∑
k wk [vk(zk)− vk(z′k)] and its inverse, where vk() is a

normalization function. If either of the two problems has a
positive minimum, preference between the two solutions can
be uniquely determined, and in turn used to assign fitness to
the individuals. Figueira et al. [43] also developed methods
relying on the set of all additive utility functions consistent
with user preferences:

U(z) =
m∑
k=1

uk(zk)

where single-objective functions uk() are general non-
decreasing functions. These utility functions are not used to
guide the search of the evolutionary algorithm, but rather
to recover desired solutions from the whole Pareto front
returned by the search. Necessary (resp. possible) pairwise
rankings are produced for pairs of solutions z and z′ such
that U(z) ≥ U(z′) for all (resp. at least one of) the utility
functions consistent with user preferences. These rankings are
employed to generate a new sample of reference solutions
together to their user preferences by interacting with the DM,
and the process is repeated until the DM is satisfied with the
obtained solutions. The method also accounts for intensity of
preference, both global and at the level of single objectives.
Phelps and Köksalan [44] employ the weighted Lp utility
function in eq. (3) trained from pairwise preferences according
to the middlemost weights technique [45]:

max ε (9)
subject to:

m∑
k=1

wk = 1, wk ≥ ε, ∀k = 1, . . . ,m

m∑
k=1

wk(z∗k − zi,k)t ≤
m∑
k=1

wk(z∗k − zj,k)t − ε

∀zi � zj

where ε is a preference margin and zi,k indicates the kth

component of objective vector zi. Constraints are iteratively
removed in chronological order in case of infeasibility. The
method shares a number of similarities with our approach:
the use of pairwise similarities as constraints in learning the
utility function, the maximization of a preference margin and
the use of the learned utility function as a fitness measure
for the evolutionary algorithm. All these methods have the
advantage of directly learning a function which retains Pareto
optimality, with the drawback of constraining in different ways
the set of allowed utility functions. On the other hand, our
method aims at exploiting the ability of kernel machines to
learn arbitrary functions, together with their noise robustness
implied by the trade-off between data fitting and complex-
ity of the learned hypothesis, which naturally accounts for
imprecise and contradictory user preferences. These features
closely correspond to real-world situations characterized by
strongly non-linear and DM-dependent utility functions, and
by the complex evolution of a decision process with possible
imprecisions and even partial contradictions.

VI. EXPERIMENTAL EVALUATION

The experimental evaluation aims at demonstrating the
effectiveness of the BC-EMO algorithm in approximating user
preferences and correctly guiding the search towards the most
preferred solution. Given this focus, we did not attempt to fine-
tune non-critical parameters which were fixed to reasonable
values for all experiments. We chose a population size of
100, 500 generations, probability of crossover equal to 1 and
probability of mutation equal to the inverse of the number of
decision variables. The number of initial generations (gen1)
was set to 200, while the number of generations between
two training iterations (geni) was set to 20. A perfect fit
(thres = 1) was required in order to prematurely stop training.
The number of training iterations and examples per iteration
were varied in the experiments as detailed later on in the
section. Concerning the learning algorithm, we fixed the C
regularization parameter in eq. (8) to 100. A preliminary
analysis showed it to be a reasonable value considering the
cost of the resulting optimization problem and an assumption
of no noise in the DM evaluation. In general, this parameter
can be tuned to the problem at hand as it depends on the kernel
employed, the amount of noise and the number of available
training instances.

We evaluated our approach on both discrete combinatorial
and continuous problems. Each problem class challenges dif-
ferent aspects of MOO and can be scaled to any number of
decision variables and objectives. Table I describes the test
problem classes we employed. For combinatorial optimization
we focused on multiobjective 0/1 knapsacks problems [30].
We considered problems with 100 items and a number of
knapsacks varying from 2 to 10. Profit and weight values for
each item were randomly chosen in the [0,1] range, while
knapsacks capacities were randomly chosen ranging from the

10

TABLE I
TEST PROBLEM CLASSES EMPLOYED IN THE STUDY (FROM [30], [46])

Name Description

0/1 KNAPSACKS

maxx∈Ωf(x)

Ω = {x | xi,j ∈ {0, 1} ∀ i = 1, . . . , n j = 1, . . . ,m}

fj(x) =

n∑
i=1

pixi,j ∀ j = 1, . . . ,m

n∑
i=1

wixi,j ≤ cj ∀ j = 1, . . . ,m

m∑
j=1

xi,j ≤ 1 ∀ i = 1, . . . , n

DTLZ1

minx∈Ωf(x)

Ω = {x | 0.25 ≤ xi ≤ 0.75 ∀ i = 1, . . . , n}
f1(x) = 1/2 · (1 + g(xm)) · x1x2 · · · xm−1

f2(x) = 1/2 · (1 + g(xm)) · x1x2 · · · (1− xm−1)

...

fm(x) = 1/2 · (1 + g(xm))(1− x1)

g(xm) = 100 ·

[
|xm|+

∑
xi∈xm

(xi − 0.5)
2 − cos(20π(xi − 0.5))

]

DTLZ6

minx∈Ωf(x)

Ω = {x | 0 ≤ xi ≤ 1 ∀ i = 1, . . . , n}
f1(x) = x1

...

fm−1(x) = xm−1

fm(x) = (1 + g(xm))h(f1, f2, . . . , fm−1, g)

g(xm) = 1 +
9

|xm|

∑
xi∈xm

xi

h = m−
m−1∑
i=1

[
fi

1 + g
(1 + sin(3πfi))

]

DTLZ7

minx∈Ωf(x)

Ω = {x | 0 ≤ xi ≤ 1 ∀ i = 1, . . . , n}

fj(x) =
1

b n
m c

bj n
m
c∑

i=b(j−1) n
m
c+1

xi ∀ j = 1, . . . ,m

gj(x) = fm(x) + 4fj(x)− 1 ≥ 0 ∀ j = 1, . . . ,m− 1

gm(x) = 2fm(x) +
m−1
min

i,j=1,i 6=j
[fi(x)− fj(x)]− 1 ≥ 0

minimum item weight to the sum of all weights as suggested
in [30]. For continuous optimization we selected a set of
MOO test problem classes from the popular DTLZ [46] suite.
We retained the original formulation of these problems as
minimization tasks. Note that xm indicates the components of
x from m up to n, according to the notation used in [46]. The
choice of this subset of problems is motivated by the form of
their Pareto fronts which allowed us to design non-linear tasks,
as will be detailed later on in the section. For test problem

DTLZ1, we slightly restricted the feasible set for decision
variables with respect to the original formulation (from [0,1]
to [0.25,0.75]) in order to rule out sparse objective vectors (i.e.
those with one or few non-zero entries) from the Pareto front
and make the preference learning task more challenging when
increasing the number of objectives.

The first set of experiments aims at showing the effective-
ness of the method in early focusing on the correct search area
with very few queries to the DM, for different test problems

11

and number of objectives, in the setting of linear utility
functions. For each problem class, we generated a number
of test instances by varying the number of objectives m from
2 to 10 and by setting the size of the input decision vector
to n = 100 for 0/1 KNAPSACKS, n = 2m for DTLZ1 and
DTLZ6 and n = 10m, as suggested in [46], for DTLZ7. A
total of 36 test instances was thus considered. Furthermore,
we generated linear utility functions by randomly choosing
weights in the range (0,1].

Figure 4 reports a representative set of results for test prob-
lems with four, eight and ten objectives for the four problem
classes. The evaluation measure is the approximation error in
percentage with respect to a gold standard final solution, the
one which is obtained by guiding the algorithm with the true
utility function. Note that the ranking function does not need
to correctly estimate the value of the utility function, and it
does not in general, but only to rank good solutions higher
than bad ones in order to correctly guide the search. Each
graph reports three learning curves for an increasing number
of training examples per iteration (exa), with one, two and
three iterations (maxit) respectively. Results are the medians
over 100 runs with different random seeds for the search of
the evolutionary algorithm.

The problem classes present quite different characteristics.
For combinatorial optimization problems, an approximation
error of less than 2% is reached with between 10 and 20
training examples depending on the number of iterations.
Multiple training iterations seem beneficial only when few
training examples are available, possibly correcting a poor
initial estimate of the DM preference. Quite surprisingly,
the algorithm even improves over the gold standard when
increasing the number of objectives, as shown by a negative
value of the approximation error. We conjecture this can be due
to a diversification effect produced by an imperfect estimate
of the DM preference, but this positive result deserves further
investigation. Concerning continuous optimization, problems
in class DTLZ1 (second row) were easily solved with just
five training examples for up to four objectives, but were
the most difficult to solve for a high number of objectives.
Problems in class DTLZ6 (third row) were the easiest to solve:
an approximation error of less that 1% could be achieved with
at most 15 examples and two training iterations even in the
case of ten objectives. Problems in class DTLZ7 (fourth row)
required more examples than those in DTLZ1 in general but
lead to better approximations with a high number of objectives.
If one considers the number of training iterations, a second
iteration was beneficial in many cases to possibly correct an
early suboptimal model, especially with few training examples.
Further training iterations did not provide substantial advan-
tages.

Note that the DM is only required to compare examples
within each training iteration, as we assume that the last
generation will represent the most relevant solutions to her.
The learning algorithm (see Section III-B) combines all these
rankings into a single optimization problem: each training iter-
ation i provides li ordered examples and a total of s = maxit
iterations are available. Given the algorithm formulation in
eq. 8, there is no need for a full ranking of solutions, but

the DM can provide partial information as sets of pairwise
comparisons. In the presented experiments, for simplicity, we
assumed a complete ranking.

In the next set of experiments we aimed at testing the
ability of the method to automatically adapt to non-linear user
preferences. Our aim is simulating many real world problems
where the most preferred solution is a compromise among the
different objectives. We thus generated test cases making sure
that the utility function projected the most preferred solutions
in a central area of the Pareto front, while retaining the
Pareto dominance property. Designing such utility functions
is not trivial. We heuristically generated them for each test
problem by the following process: 1) running the plain NSGA-
II algorithm to reach an approximation of the Pareto front
2) computing a reference point as the average of the final
population 3) computing its distance to all other points 4)
randomly generating weights of a second order polynomial
5) computing the utility value for all points according to the
generated polynomial 6) keeping the polynomial if the rank
correlation between the utility values and the distances to the
reference point was higher than 0.4. This should guarantee that
solutions distant from the center are less preferred.

BC-EMO was allowed to choose by internal 3-fold cross
validation among linear and second degree polynomial ker-
nel as well as Gaussian kernel with γ selected in the set
{e−3, e−2, e−1, 1, e1, e2, e3}.

Figure 5 (left) shows an example of Pareto front reached
by the plain NSGA-II algorithm for the DTLZ1 problem with
two objectives. Figure 5 (right) shows the value of Pareto front
according to the following polynomial utility function:

0.28 · z2
1 + 0.29 · z2z1 + 0.38 · z2

2 + 0.05 · z1 (10)

Note that the solution which is most preferred by the DM
(z1 = 0.249, z2 = 0.251) lies in the middle of the Pareto
front. We ran our BC-EMO algorithm on this test problem
and compared to two alternative versions: using a fixed linear
kernel versus automatically tuning the kernel by internal k-
fold cross validation. Figure 6 shows the approximation results
obtained for an increasing number of training examples. Re-
sults are medians over 10 runs. The linear kernel is completely
unable to improve the performance regardless of the amount of
training examples, stopping at an error of approximately 8%.
On the contrary, tuning the kernel allows to reproduce the user
preferences accurately enough to drive the search towards the
desired solution (see Figure 5 (right)). Let’s note that in the
initial point, corresponding to three examples, a linear kernel
is chosen by default (insufficient data for a model selection
by cross validation).

Problem DTLZ6 presents a highly disconnected Pareto
front, as shown in Figure 7 (left) where plain NSGA-II was
again employed to generate the sample. Figure 7 (right) shows
the value of Pareto front according to the following polynomial
utility function:

0.05 · z2z1 + 0.6 · z2
1 + 0.38 · z2 + 0.23 · z1 (11)

This utility function generates two separate non-linear re-
gions, with the global minimum located in the left region

12

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

4 KNAPSACKS

#it=1
#it=2
#it=3

-2

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

8 KNAPSACKS

#it=1
#it=2
#it=3

-2

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

10 KNAPSACKS

#it=1
#it=2
#it=3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 4 6 8 10 12 14 16 18 20

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ1 with 4 objectives

#it=1
#it=2
#it=3

 40

 60

 80

 100

 120

 140

 160

 180

 200

 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ1 with 8 objectives

#it=1
#it=2
#it=3

 40

 60

 80

 100

 120

 140

 160

 180

 200

 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ1 with 10 objectives

#it=1
#it=2
#it=3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 4 6 8 10 12 14 16 18 20

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ6 with 4 objectives

#it=1
#it=2
#it=3

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ6 with 8 objectives

#it=1
#it=2
#it=3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25 30 35 40 45 50
A

pp
ro

xi
m

at
io

n
er

ro
r

(%
)

Number of examples for iteration

DTLZ6 with 10 objectives

#it=1
#it=2
#it=3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4 6 8 10 12 14 16 18 20

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ7 with 4 objectives

#it=1
#it=2
#it=3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ7 with 8 objectives

#it=1
#it=2
#it=3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples for iteration

DTLZ7 with 10 objectives

#it=1
#it=2
#it=3

Fig. 4. Learning curves for an increasing number of training examples per iteration with one (red/solid), two (green/dashed) and three (blue/dotted) training
iterations. Each row reports results for a different problem class: 0/1 KNAPSACKS, DTLZ1, DTLZ6 and DTLZ7 respectively. Each column reports results
for a different number of objectives, respectively four, eight and ten. Results are medians over 100 runs. Note that y-axes have different ranges.

(z1 = 0.192, z2 = 3.622). Learning curves for the resulting
problem are shown in Figure 8. The linear utility function
converges to a suboptimal solution, which is actually located
at the left edge of the first region (z1 = 0, z2 = 4), while
tuning the kernel allows to converge to the global optimum.

Finally, problem DTLZ7 presents a Pareto front similar to
the one of DTLZ1, as shown in Figure 9 (left). Figure 9 (right)
shows the non-linear surface obtained by using the following
polynomial utility function:

0.44 · z2
1 + 0.33 · z1 + 0.09 · z2z1 + 0.14 · z2

2 (12)

Figure 10 reports learning curves for the problem, again
showing that a linear kernel is totally unable to locate the

correct region3 stopping at approximately 33% error, while
the tuned kernel version converges to the solution (z1 =
0.148, z2 = 0.407) with less than ten training examples.

Increasing the number of iterations did not change results
significantly. In particular, using a linear kernel leads to a
wrong direction when generating new individuals and further
training iterations are useless to correct this initial behaviour.

It is interesting to note that all non-linear cases show a
similar behaviour in terms of form of the approximating
model. In detail, seriously suboptimal solutions are found in
the few cases in which a linear kernel is selected. This happens

3Note that the solution found using the linear kernel lies in an area of the
Pareto front which was not returned by the initial plain NSGA-II run, see
Fig. 9 (right)

13

Fig. 5. Problem DTLZ1 with two objectives: (left) Pareto front for a sample run of plain NSGA-II without user preference; (right) preference values of the
Pareto front according to the non-linear utility function in eq. (10).

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples

DTLZ1: learning curves

tuned kernel
linear kernel

Fig. 6. Approximation error for the non-linear DTLZ1 problem as a function
of the number of training instances: tuned kernel vs linear kernel. Results are
medians over 10 runs.

by default with only three training examples and in rare cases
with a very small numbers of examples: see for instance
the spike for six examples in Figure 10. On the other hand,
excellent fits are obtained when a second degree polynomial
kernel is correctly chosen in the tuning phase. However, very
good approximations are also achieved most of the times with
Gaussian kernels, especially when enough training examples
are available.

VII. FUTURE DIRECTIONS

We showed that support vector machines, especially in com-
bination with the kernel trick, provide an effective solution to
model the fitness of solutions for an evolutionary algorithm, in
the context of interactive multi-objective optimization (MOO).

This research work leaves many avenues for future explo-
rations and generalizations.

MOO can be considered as a paradigmatic case of absence
of complete information or of information scarcity: the de-
cision maker specifies only a set of objectives but not their

detailed combination. Future extensions and generalizations
may consider applications to other poorly specified problems.
It is widely acknowledged that most of the work in applied
problem solving and optimization is related to formulating
the problem by eliciting knowledge, by designing better and
better models of the application domain through an itera-
tive refinement process with different actors: domain experts,
software experts, decision makers. Information is scarce and
costly to obtain: problem solving should address this issue in
an explicit and principled manner, by studying efficient and
flexible modelling techniques and by quantifying the cost of
obtaining improved models, e.g., the number and difficulty
of questions raised during the modelling process and the
computational costs for updating the model. Extensions can
consider the following contexts:

• Dealing with a DM who is changing preferences. The
current formulation of the approach puts on the same
level feedback coming from different iterations of the
search procedure. This behaviour can be suboptimal if
the DM is herself learning her own preferences during
the search, or if her utility function is too complex to
be effectively approximated on the whole space, while
only the shape locally guiding the search to the correct
direction would be actually needed. It is rather straight-
forward to include a decay mechanism for feedback
coming from previous iterations, by replacing the global
regularization parameter C in equation (8) by a set of
iteration-dependent parameters Ci. An exponential decay,
for instance, would be obtained by setting Ci = C exp(i),
allowing to early forget about past feedback and to focus
on the current portion of the search space. By setting C to
a small value, we force a behaviour which initially prefers
simple approximations not trusting DM’s feedback much.
The relative importance of the feedback would then
progressively increase on the rationale that the DM is
becoming more confident of her evaluations.

• Objective (or feature) elicitation. The amount of infor-
mation available is in many cases less that in the MOO

14

Fig. 7. Problem DTLZ6 with two objectives: (left) Pareto front for a sample run of plain NSGA-II without user preference; (right) preference values of the
Pareto front according to the non-linear utility function in eq. (11).

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples

DTLZ6: learning curves

tuned kernel
linear kernel

Fig. 8. Approximation error for the non-linear DTLZ6 problem as a function
of the number of training instances: tuned kernel vs linear kernel. Results are
medians over 10 runs.

context. In particular, objectives may be vague, fuzzy,
not already formulated as clean mathematical functions.
As challenging cases, let’s consider the fashion business,
where defining a formula for an elegant attire is far from
trivial, or the industrial design area, the advertisement
field, the medical sector. Machine learning can help
in learning the objectives, the relevant and informative
features, before learning how to combine them. Concept
learning [47], curriculum learning [48] or deep learn-
ing [49] techniques can be tested here.

• Learning from hints. In some cases the available infor-
mation may be formulated as constraints, or as hints
about the form of the appropriate model [50]. For ex-
ample, hints may indicate that the appropriate modelling
functions are symmetric by exchanging some variables,
or non-negative, or increasing as a function of specific
inputs. Constraints can be rigid or soft, implying penalties
for violating them.

• Adversarial models versus statistical models. While the

SVM tools arise in a statistical machine learning context,
and aim at designing systems which are approximately
correct with high probability, other contexts assume an
adversarial model, see for example [51]. An adversarial
entity (real or theoretical) works to beat the system and
one aims at minimizing the maximum regret, the worst-
case loss under all possible realizations of a user’s utility
function. Results in this contexts are often very costly to
obtain and not always strongly motivated by real-world
applications (after all most users are interested in the
actual obtained results and not so much in regret), but
the study of worst-case results better defines the area
where statistical and approximated results are the only
possibility.

• Intelligent interaction strategies. Active or query learning
methods are a viable candidate to further reduce the
number of questions asked to the DM. In a world where
computational costs are of much less significance than
cognitive limitations, a less efficient method that relies
on fewer or simpler questions might be more valuable
than a faster one with higher cognitive requirements. The
reduction in the number of questions can occur through
the strategic choice of future examples to be presented for
evaluations, depending on the past feedback received, and
therefore on the current preference model. For example,
if pairwise comparison queries are used, examples should
be sufficiently different to permit a clear preference by
the DM. In addition, the optimization context demands a
shift of emphasis from standard active learning strategies:
the aim is not to reconstruct an unknown model in all
areas, but to concentrate on the areas which are most
promising for optimization. An example in the context
of intelligently-guided simulations is [52].

• Learning from related problems. Transfer learning tech-
niques could provide added benefits when solving a series
of related problems: we plan to evaluate the effectiveness
of transferring the previous experience accumulated in
two different contexts: new and related problems solved
by the same DM (for example problems sharing a subset

15

Fig. 9. Problem DTLZ7 with two objectives: (left) Pareto front for a sample run of plain NSGA-II without user preference; (right) preference values of the
Pareto front according to the non-linear utility function in eq. (12).

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

A
pp

ro
xi

m
at

io
n

er
ro

r
(%

)

Number of examples

DTLZ7: learning curves

tuned kernel
linear kernel

Fig. 10. Approximation error for the non-linear DTLZ7 problem as a function
of the number of training instances: tuned kernel vs linear kernel. Results are
medians over 10 runs.

of the objectives), or the same problem solved by DM’s
with different preferences.

• Learning in a discrete setting. An extension of this
work to discrete multi-objective optimization tasks is of
interest, by using the effective kernel functions recently
introduced for structured discrete entities like graphs and
trees [53].

• Group decision making. A situation in which multiple
DMs need to be jointly considered could be addressed by
pursuing a multitask approach [54]: each DM is modelled
by a different utility function, but their parameters are
connected to each other so that information can flow
among related tasks. In Artificial Neural Networks, this is
typically [54] obtained by sharing a common hidden layer
connected to the per-task output ones. Kernel machines
have been adapted [55] to multitask learning by acting
on the weight regularizer (see eq.(6)(8)): task-dependent
weights can be forced close to a common (regularized)
weight vector, or task similarity can be included via the

graph Laplacian of a task-similarity graph [55], to cite
two useful examples. While these approaches assume that
separate per-task predictions should be made on each
example, a common aggregate decision on the utility of
candidate solutions could be forced by averaging prefer-
ences of the DMs, taking the minimum between them, or
any other sensible combination. The aggregation chosen
should be reflected on the loss component of the SVM
involving soft constraints, by penalizing incorrect average
ranking in the first case, or incorrect worst ranking in the
second.

Needless to say, all above methods can be tested in the
traditional evolutionary context, not only in the multi-objective
case, as ways to efficiently assign fitness values to population
members where only partial information exists about the true
value of solutions.

While the above points refer to potential extensions of this
work by considering machine learning tools, future extensions
of this investigation can consider a detailed analysis of the
robustness of the proposed technique in different noisy scenar-
ios. Noise can be intrinsic in the problem domain (for example
when optimizing a system with stochastic outputs), or can be
related to a noisy evaluation by the DM. For example, the
DM may fail to consistently rank solutions, in particular if
solutions tend to be close, or may make mistakes from time
to time. A preliminary investigation dealing with robustness
of the BC-EMO technique is presented in [56].

VIII. CONCLUSIONS

We presented a preference-based EMO algorithm (BC-
EMO) characterized by its ability to learn an arbitrary utility
function from a decision maker (DM) who expresses prefer-
ences between couples of selected solutions. The method to
build a flexible preference model, possibly highly nonlinear, is
based on Support Vector Machines and derived tools from the
machine learning community. From the multi-objective deci-
sion making perspective, the main contribution of the method
is its ability to function without any a priori assumptions on
the shape on the shape of the DM’s utility function.

16

The optimization methodology of Reactive Search Opti-
mization (RSO) based on the paradigm of learning while
optimizing is adopted in two directions: the progressive tuning
of a preference model following a DM interactive evaluation
and personal learning path, and the automated adaptation of
the model form to one which is most appropriate, in a cross-
validated manner, to the data collected during the interaction.

The method is robust as it can potentially withstand incom-
plete, imprecise and even contradictory feedback by the DM.
The alternation of evolutionary optimization and DM ranking
can be organized according to a flexible schedule, depending
on the willingness by the DM to interact more times during the
solution process and by intrinsic characteristics of the problem
to be solved and the complexity of the user preferences.

The presented experimental results demonstrate the feasibil-
ity and effectiveness of the BC-EMO algorithm on a variety
of benchmark tasks, with both linear and non-linear user
preferences. We hope this work will motivate future extensions
to integrate machine learning techniques into optimization and
problem-solving techniques.

ACKNOWLEDGMENT

We acknowledge K. Deb, A. Pratap, S. Agarwal and T.
Meyarivan for making available the software NSGA-II used as
a starting point to develop our experiments, and T. Joachims
for sharing the code of SVMlight.

REFERENCES

[1] J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms,” in Proceedings of the 1st International Conference
on Genetic Algorithms. Hillsdale, NJ, USA: L. Erlbaum Associates
Inc., 1985, pp. 93–100.

[2] N. Srinivas and K. Deb, “Multiobjective optimization using nondomi-
nated sorting in genetic algorithms,” Evolutionary Computation, vol. 2,
pp. 221–248, 1994.

[3] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach,” Evolutionary
Computation, IEEE Transactions on, vol. 3, no. 4, pp. 257–271, Nov
1999.

[4] K. Deb, Multi-objective optimization using evolutionary algorithms.
Wiley, 2001.

[5] P. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms,” IEEE Transactions
on Evolutionary Computation, vol. 7, no. 2, pp. 174–188, 2003.

[6] J. Branke, “Consideration of Partial User Preferences in Evolutionary
Multiobjective Optimization,” in Multiobjective Optimization: Interac-
tive and Evolutionary Approaches. Springer-Verlag Berlin, Heidelberg,
2008, pp. 157–178.

[7] F. di Pierro, K. Soon-Thiam, and D. Savic, “An investigation on prefer-
ence order ranking scheme for multiobjective evolutionary optimization,”
Evolutionary Computation, IEEE Transactions on, vol. 11, no. 1, pp.
17–45, Feb. 2007.

[8] I. Das, “A preference ordering among various pareto optimal alterna-
tives,” Structural and Multidisciplinary Optimization, vol. 18, no. 1, pp.
30–35, 1999.

[9] J. March, “Bounded rationality, ambiguity, and the engineering of
choice,” The Bell Journal of Economics, pp. 587–608, 1978.

[10] K. Miettinen, F. Ruiz, and A. Wierzbicki, “Introduction to Multiobjective
Optimization: Interactive Approaches,” in Multiobjective Optimization:
Interactive and Evolutionary Approaches. Springer-Verlag Berlin,
Heidelberg, 2008, pp. 27–57.

[11] R. Battiti, M. Brunato, and F. Mascia, Reactive Search and Intelligent
Optimization, ser. Operations research/Computer Science Interfaces.
Springer Verlag, 2008, vol. 45.

[12] L. Citi, R. Poli, C. Cinel, and F. Sepulveda, “P300-based BCI mouse
with genetically-optimized analogue control,” IEEE transactions on
neural systems and rehabilitation engineering, vol. 16, no. 1, pp. 51–61,
2008.

[13] D. Jones, “A Taxonomy of Global Optimization Methods Based on
Response Surfaces,” Journal of Global Optimization, vol. 21, no. 4,
pp. 345–383, 2001.

[14] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 6, pp. 712–731, 2007.

[15] J. Branke, K. Deb, K. Miettinen, and R. Słowiński, Eds., Multiobjec-
tive Optimization: Interactive and Evolutionary Approaches. Berlin,
Heidelberg: Springer-Verlag, 2008.

[16] H. Takagi et al., “Interactive evolutionary computation: Fusion of the
capabilities of EC optimization and human evaluation,” Proceedings of
the IEEE, vol. 89, no. 9, pp. 1275–1296, 2001.

[17] B. Roy and V. Mousseau, “a theoretical framework for analysing the
notion of relative importance,” Journal of Multi Criteria Decision
Analysis, 1996.

[18] R. Steuer, Multiple Criteria Optimization: Theory, Computation, and
Application. Wiley, New York, 1986.

[19] L. Tanner, “Selecting a text-processing system as a qualitative multiple
criteria problem,” European Journal of Operational Research, vol. 50,
no. 2, pp. 179–187, January 1991.

[20] V. V. Podinovskii, “The quantitative importance of criteria with discrete
first-order metric scale,” Autom. Remote Control, vol. 65, no. 8, pp.
1348–1354, 2004.

[21] R. Steuer and E. Choo, “An interactive weighted Tchebycheff proce-
dure for multiple objective programming,” Mathematical Programming,
vol. 26, no. 3, pp. 326–344, 1983.

[22] R. Dell and M. Karwan, “An interactive MCDM weight space reduc-
tion method utilizing a Tchebycheff utility function,” Naval Research
Logistics, vol. 37, no. 2, 1990.

[23] C. Cortes and V. N. Vapnik, “Support vector networks,” Machine
Learning, vol. 20, no. 3, pp. 1–25, Sep 1995.

[24] S. Menchetti, “Learning preference and structured data: Theory and
applications,” Ph.D. dissertation, Universit degli Studi di Firenze, 2005.

[25] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order things,”
Journal of Artificial Intelligence Research, vol. 10, pp. 243–270, 1999.

[26] M. Collins and N. Duffy, “Convolution kernels for natural language,” in
Advances in Neural Information Processing Systems 14. MIT Press,
2001, pp. 625–632.

[27] M. Collins, N. Duffy, and F. Park, “New ranking algorithms for parsing
and tagging: Kernels over discrete structures, and the voted perceptron,”
in In Proceedings of ACL 2002, 2002, pp. 263–270.

[28] C. A. Micchelli, Y. Xu, and H. Zhang, “Universal kernels,” J. Mach.
Learn. Res., vol. 7, pp. 2651–2667, 2006.

[29] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
New York, NY, USA: Cambridge University Press, 2004.

[30] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist multi-
objective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolution-
ary Computation, vol. 6, pp. 182–197, 2002.

[32] C. Burges, “A tutorial on support vector machines for pattern recog-
nition,” in Data Mining and Knowledge Discovery. Boston: Kluwer
Academic Publishers, 1998, (Volume 2).

[33] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison, Tech. Rep. 1648, 2009.

[34] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “ParamILS:
an automatic algorithm configuration framework,” Journal of Artificial
Intelligence Research, vol. 36, pp. 267–306, October 2009.

[35] C. Coello, “Handling preferences in evolutionary multiobjective opti-
mization: a survey,” in Proceedings of the 2000 Congress on Evolution-
ary Computation, vol. 1, 2000.

[36] A. Jaszkiewicz and J. Branke, “Interactive Multiobjective Evolutionary
Algorithms,” in Multiobjective Optimization: Interactive and Evolution-
ary Approaches. Springer-Verlag Berlin, Heidelberg, 2008, pp. 179–
193.

[37] M. Sun, A. Stam, and R. Steuer, “Solving multiple objective pro-
gramming problems using feed-forward artificial neural networks: the
interactive ffann procedure,” Manage. Sci., vol. 42, no. 6, pp. 835–849,
1996.

[38] ——, “Interactive multiple objective programming using tchebycheff
programs and artificial neural networks,” Comput. Oper. Res., vol. 27,
no. 7-8, pp. 601–620, 2000.

[39] H. Z. Huang, Z. G. Tian, and M. J. Zuo, “Intelligent interactive
multiobjective optimization method and its application to reliability
optimization,” IIE Transactions, vol. 37, no. 11, pp. 983–993, 2005.

[40] T. Saaty, “Axiomatic foundation of the analytic hierarchy process,”
Manage. Sci., vol. 32, no. 7, pp. 841–855, 1986.

17

[41] G. Quan, G. Greenwood, D. Liu, and S. Hu, “Searching for multiob-
jective preventive maintenance schedules: Combining preferences with
evolutionary algorithms,” European Journal of Operational Research,
vol. 177, no. 3, pp. 1969–1984, 2007.

[42] C. White, A. Sage, and A. Dozono, “A model of multiattribute deci-
sionmaking and trade-off weight determination under uncertainty,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 14, no. 2, pp. 223–
229, 1984.

[43] J. Figueira, S. Greco, V. Mousseau, and R. Słowiński, “Interactive
Multiobjective Optimization using a Set of Additive Value Functions,”
Lecture Notes In Computer Science, pp. 97–119, 2008.

[44] S. Phelps and M. Koksalan, “An interactive evolutionary metaheuristic
for multiobjective combinatorial optimization,” Management Science,
pp. 1726–1738, 2003.

[45] M. Koksalan, M. Karwan, and S. Zionts, “An improved method for
solving multiple criteria problems involving discrete alternatives,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 14, no. 1, pp. 24–
34, 1984.

[46] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in in Congress on Evolutionary
Computation (CEC2002, 2002, pp. 825–830.

[47] D. Angluin, “Queries and concept learning,” Machine learning, vol. 2,
no. 4, pp. 319–342, 1988.

[48] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th International Conference on
Machine Learning. ACM New York, NY, USA, 2009.

[49] Y. Bengio and Y. LeCun, “Scaling learning algorithms towards AI,”
Large-Scale Kernel Machines, 2007.

[50] Y. Abu-Mostafa, “Learning from hints,” Journal of Complexity, vol. 10,
pp. 165–165, 1994.

[51] D. Braziunas and C. Boutilier, “Minimax regret based elicitation of
generalized additive utilities,” in Proceedings of the 23rd Conference
on Uncertainty in Artificial Intelligence (UAI-07), 2007.

[52] M. Burl and E. Wang, “Active learning for directed exploration of
complex systems,” in Proceedings of the 26th International Conference
on Machine Learning. ACM, 2009, pp. 89–96.

[53] T. Gärtner, “Kernels for structured data,” Ph.D. dissertation, Universität
Bonn, 2005.

[54] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1, pp.
41–75, 1997.

[55] T. Evgeniou, C. A. Micchelli, and M. Pontil, “Learning multiple tasks
with kernel methods,” J. Mach. Learn. Res., vol. 6, pp. 615–637, 2005.

[56] P. Campigotto and A. Passerini, “Adapting to a realistic decision maker:
experiments towards a reactive multi-objective optimizer.” in Proc.4th
Learning and Intelligent Optimization Conference, LION 4, Venice, Italy,
January 2010, ser. LNCS, R. Battiti and C. Blum, Eds. Springer Verlag,
2010, in press.

Roberto Battiti Prof. Roberto Battiti received the
Laurea degree in Physics from the University of
Trento, Italy, in 1985 and the Ph.D. degree from the
California Institute of Technology (Caltech), USA,
in 1990. He is now full professor of Computer Sci-
ence at Trento university, deputy director of the DISI
Department (Electrical Engineering and Computer
Science) and director of the LION lab at (machine
Learning and Intelligent OptimizatioN). His main
research interests are heuristic algorithms for op-
timization problems, in particular Reactive Search

Optimization (RSO) for discrete and continuous optimization problems, neural
networks and machine learning. He is now investigating new ways to integrate
RSO into data mining, visual analytics and business intelligence. R. Battiti
is a fellow of the IEEE. Full details about interests, research activities and
scientific production can be found in the web: http://lion.disi.unitn.it/∼battiti/,
http://reactive-search.org/ .

Andrea Passerini Andrea Passerini graduated in
Computer Science at the University of Florence in
2000 and received his Ph.D. at the same University
in 2004. He is currently Assistant Professor at the
Department of Information Engineering and Com-
puter Science of the University of Trento. His main
research interests are in the area of machine learning,
with a special enphasis on bioinformatics applica-
tions. In recent years he developed techniques aimed
at combining statistical and symbolic approaches
to learning, via the integration of inductive logic

programming and kernel machines. He is also pursuing a deeper integration
of machine learning approaches and complex optimization techniques. He
coauthored more than forty scientific publications.

