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Abstract

Weighted Model Integration (WMI) is a popular
formalism aimed at unifying approaches for prob-
abilistic inference in hybrid domains, involving
logical and algebraic constraints. Despite a con-
siderable amount of recent work, allowing WMI
algorithms to scale with the complexity of the hy-
brid problem is still a challenge. In this paper we
highlight some substantial limitations of existing
state-of-the-art solutions, and develop an algorithm
that combines SMT-based enumeration, an effi-
cient technique in formal verification, with an ef-
fective encoding of the problem structure. This
allows our algorithm to avoid generating redun-
dant models, resulting in substantial computational
savings. An extensive experimental evaluation on
both synthetic and real-world datasets confirms the
advantage of the proposed solution over existing
alternatives.

1 INTRODUCTION

Weighted Model Integration [Belle et al., |2015] recently
emerged as a unifying formalism for probabilistic inference
in hybrid domains, characterized by both continuous and
discrete variables and their relationships. The paradigm ex-
tends Weighted Model Counting (WMC) [Chavira and Dar{
wiche} [2008]|, which is the task of computing the weighted
sum of the set of satisfying assignments of a propositional
formula, to deal with SMT formulas (e.g. [Barrett et al.|
2009]]). Whereas WMC can be made extremely efficient
by leveraging component caching techniques [Sang et al.|
2004, Bacchus et al.l 2009], these strategies are hard to
apply for WMI because of the tight coupling induced by
the arithmetic constraints. Indeed, component caching ap-
proaches for WMI are restricted to fully factorized densi-
ties with few dependencies among continuous variables

[Belle et al., 2016]. Another direction specifically targets
acyclic [Zeng and Van den Broeckl, [2019]|Zeng et al.,2020a]
or loopy [Zeng et al., |2020b]] pairwise models.

Exact solutions for more general classes of densities and con-
straints mainly leverage advancements in SMT technology
or in knowledge compilation (KC) [[Darwiche and Marquis,
2002[]. WMI-PA [Morettin et al.,[2017},2019] relies on SMT-
based Predicate Abstraction (PA) [Lahiri et al., [2006] to
reduce the number of models to be generated and integrated
over, and was shown to achieve substantial improvements
over previous solutions. However, we show how WMI-PA
has the major drawback of ignoring the structure of the
weight function when pruning away redundant models. This
seriously affects its simplification power when dealing with
symmetries in the density. The use of KC for hybrid proba-
bilistic inference was pioneered by Sanner and Abbasnejad
[2012]] and further refined in a series of later works [Kolb
et al., 2018, [Dos Martires et al., 2019, [Kolb et al.| 2020\
Feldstein and Belle) 2021]]. By compiling a formula into an
algebraic circuit, KC techniques can exploit the structure
of the problem to reduce the size of the resulting circuit,
and are at the core of many state-of-the-art approaches for
WMC [[Chavira and Darwichel, 2008|]. However, even the
most recent solutions for WMI [Dos Martires et al., 2019,
Kolb et al., 2020] have serious troubles in dealing with
densely coupled problems, resulting in exponentially large
circuits.

In this paper we introduce a novel algorithm for WMI that
aims to combine the best of both worlds, by introducing
weight-structure awareness into PA-based WMI. The main
idea is to iteratively build a formula which mimics the con-
ditional structure of the weight function, so as to drive the
SMT-based enumeration algorithm preventing it from gen-
erating redundant models. An extensive experimental evalu-
ation on synthetic and real-world datasets shows substantial
computational advantages of the proposed solution over
existing alternatives for the most challenging settings.

Our main contributions can be summarized as follows:
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* We identify major efficiency issues of existing state-
of-the-art WMI approaches, both PA and knowledge-
compilation based.

* We introduce SA-WMI-PA, a novel WMI algorithm
that combines PA with weight-structure awareness.

* We show how SA-WMI-PA achieves substantial com-
putational improvements over existing solutions in both
synthetic and real-world settings.

2 BACKGROUND

2.1 SMT AND PREDICATE ABSTRACTION

Satisfiability Modulo Theories (SMT) (see Barrett et al.
[2009]) consists in deciding the satisfiability of first-order
formulas over some given theory. For the context of this
paper, we will refer to quantifier-free SMT formulas over
linear real arithmetic (LR.A), possibly combined with unin-
terpreted function symbols (LR.A U EUF). We adopt the
notation and definitions in [Morettin et al.[[2019]]. We use
B = {T, L} to indicate the set of Boolean value, whereas R
indicates the set of real values. SMT(LR.A) formulas com-
bines Boolean variables A; € B and LR.A atoms in the form
(3=, ciz; > c¢) (Where ¢; are rational values, x; are real vari-
ables in R and > is one of the standard algebraic operators
{=,#,<,>, <, >}) by using standard Boolean operators
{~A\,V,—=,<}. In SMT(LRAU EUF), LR.A terms can
be interleaved with uninterpreted function symbols. Some
shortcuts are provided to simplify the reading. The formula
(x; > 1) A (z; < wu)is shortened into [z; € [I, u]].

Given an SMT formula ¢, a fotal truth assignment i is a
function that maps every atom in ¢ to a truth value in B. A
partial truth assignment maps only a subset of atoms to B.

2.2 WEIGHTED MODEL INTEGRATION (WMI)

Letx = {z1,.., 2y} € RN and A = {A},..., Ay} €
BM for some integers N and M. op(x,A) denotes an
SMT(LR.A) formula over variables in A and x (subgroup
of variables are admissible), while w(x, A) denotes a non-
negative weight function s.t. RY x BM —— R, Intuitively,
w encodes a (possibly unnormalized) density function over
A x x. Hereafter y® denotes a truth assignment on A,
w=RA denotes a truth assignment on the LR.A-atoms of ¢,
@[] (x) denotes (any formula equivalent to) the formula
obtained from ¢ by substituting every Boolean value A;
with its truth value in z® and propagating the truth values
through Boolean operators, and wp,a](x) = w(x, p?) is w
restricted to the truth values of ;.

Given a theory 7 € {LRA, LRAU EUF}, the nomencla-
ture TTA(p) = {p1, ..., j1;} defines the set of T-consistent
total assignments over both propositional and 7 atoms that

propositionally satisfy ¢; TA(p) = {u1, ..., 1;} represents
one set of T partial assignments over both propositional
and 7 atoms that propositionally satisfy ¢, s.t. every total
assignment in 77A(¢p) is a super-assignment of some of the
partial ones in TA(y). Given by p(x, A), with TTA(3x.¢)
we mean the set of all total truth assignment ;1 on A s.t.
¢[ua)(x) is T-satisfiable, and by 7A(3x.¢) a set of partial
ones s.t. every total assignment in T7A(3x.¢) is a super-
assignment of some of the partial ones in TA(3x.¢).

The Weighted Model Integral of w(x,A) over p(x, A) is
defined as follows [Morettin et al.,[2019]:
WMI(@? w|x, A) = Z WMInb(SO[uA] y WA |X)7 (D
HA e]BJ\l

= Z WMInb(@[pA]>w[uA]|X) 2
pAETTA(Ix.0)

/ w(x) dx, (3)
(x)

/ w(x) dx, (4)
PERA

where the pA’s are all total truth assignments on A,
WMl p(p, w|x) is the integral of w(x) over the set
{x | p(x) is true} (“,»" means “no-Booleans”).

WMl (0, w[x) =

HERAETA()

We call a support of a weight function w(x, A) any subset
of RY x BM out of which w(x, A) = 0, and we represent
it as a LR.A-formula x(x, A). We recall that, consequently,

WMI(p A x, wlx, A) = WMI(p, w[x, A). ©)

We consider the class of feasibly integrable on LRA
(FI*R4) functions w(x), which contain no conditional com-
ponent, and for which there exists some procedure able to
compute WM, (11574, w|x) for every set of LRA liter-
als on x. (E.g., polynomials are FIRA ) Then we call a
weight function w(x, A), feasibly integrable under LR.A
conditions ( FIUCERA ) iff it can be described in terms of a
support LR A-formula x(x, A) (T if not provided), a set
U = {4i(x,A)}E | of LRA conditions, in such a way
that, for every total truth assignment p¥ to ¥, wi, e (X) s
total and FI*®* in the domain given by the values of (x, A)
which satisfy (x A %) (a1 FIUC“™A functions are all the
weight functions which can be described by means of arbi-
trary combinations of nested if-then-else’s on conditions in
A and W, s.t. each branch p¥ results into a FIFRA weight
function. Each ¥ describes a portion of the domain of
w, inside which W, (x) is FILRA, and we say that /,L‘I’
identifies wi,¥) in w.

In what follows we assume w.l.o.g. that FIUCX®A functions
are described as combinations of constants, variables, stan-
dard mathematical operators 4, —, -, / un-conditioned math-
ematical functions (e.g., exp, sin, ...), conditional expres-
sions in the form (If v); Then ty; Else t5;) whose conditions
1; are LR.A formulas and terms ¢1;, to; are FIUCERA,



Algorithm 1 WMI-PA(p, w, x, A)

1: (¢p*,w*, A*) < LabelConditions(p, w,x, A)
20 MA” « TTA(PredAbs,.)(A*))

3: vol 0

4: for p" € MA" do

5: Simplify(cp?uA*])

6: if LiteralConjunction(ng‘uA*]) then

7: vol + vol + WI\/IInb(@ELA*Vw[*“A*] |x)
8: else

9: MERA TA(PredAbs[w[*“A*]](Atoms(gof‘“m])))
10: for /“RA € MERA do
11: vol < vol + WMInb(uLRA7w[*#A*]|x)

12: return vol

2.3 WMI VIA PREDICATE ABSTRACTION
WMI-PA is an efficient WMI algorithm presented in Moret}
tin et al.[[2017,2019] which exploits SMT-based predicate
abstraction. Let w(x, A) be a FIUCX™4 function as above.
WMI-PA is based on the fact that

WMI(p, wlx, A) = Y WMl (], a+), W], - [X) (6)
uA* ETTA(3x.p*)
) K
©E oAxA N\ (Br o vi) (7
k=1

A* = AUBs.t. B = {By,..., Bx} are fresh propositional
atoms and w*(x, A U B) is the weight function obtained by
substituting in w(x, A) each condition v, with By,.

The pseudocode of WMI-PA is reported in Algorithm
First, the problem is transformed (if needed) by label-
ing all conditions ¥ occurring in w(x,A) with fresh
Boolean variables B. After this preprocessing stage, the
set MA" £ TTA(3x.0*) is computed by invoking
SMT-based predicate abstraction [Lahiri et al| [2006],
namely TTA(PredAbsi,-;(A*)). Then, the algorithm iter-
ates over each Boolean assignment " in M2, Plaan
is simplified by the Simplify procedure. Then, if <p[*u Av]
is already a conjunction of literals, the algorithm di-
rectly computes its contribution to the volume by calling
WMInb(wf‘uA*], w[*uA*] x). Otherwise, TA(@E‘HA*]) is com-

puted as TA(PredAbs[w[* as] (Atoms(gof‘um]))) to produce
"

partial assignments, and the algorithm iteratively computes
contributions to the volume for each p/“R4. We refer the
reader to Morettin et al.|[2019] for more details.

Notice that in the actual implementation the potentially-
large sets MA" and M~ZRA are not generated explicitly.
Rather, their elements are generated, integrated and then
dropped one-by-one, so that to avoid space blowup.

3 EFFICIENCY ISSUES

3.1 KNOWLEDGE COMPILATION

We start our analysis of WMI techniques by noticing a major
problem with existing KC approaches for WMI [Dos Mar
tires et al.,[2019} [Kolb et al.,|2020], in that they tend easily
to blow up in space even with simple weight functions. Con-
sider, e.g., the case in which

N
w(x, A) = H(if ; then w; (x) else wia(x)) 3)

i=1

where the ;s are LR.A conditions on {x, A} and the
w;1, w;o are generic functions on x. First, the decision di-
agrams do not interleave arithmetical and conditional op-
erators, rather they push all the arithmetic operators below
the conditional ones. Thus with (8] the resulting decision
diagrams consist of 2N branches on the 1;8, each corre-
spondin%’to a distinct unconditioned weight function of the
form [ [, wi;, (x) s.t. 4, € {1,2}. Second, the decision
diagrams are built on the Boolean abstraction of w(x, A),
s.t. they do not eliminate a priori the useless branches con-
sisting in LR.A-inconsistent combinations of ;s, which
can be up to exponentially many.

With WMI-PA, instead, the representation of @]) does not
grow in size, because FIUCX™A functions allow for inter-
leaving arithmetical and conditional operators. Also, the
SMT-based enumeration algorithm does not generate LR.A-
inconsistent assignments on the ;s. We stress the fact that
@]) is not an artificial scenario: rather, e.g., this is the case of
the real-world logistics problems in Morettin et al.|[2019]].

3.2 WMI-PA

We continue our analysis by noticing a major deficiency also
of the WMI-PA algorithm, that is, it fails to leverage the
structure of the weight function to prune the set of models to
integrate over. We illustrate the issue by means of a simple
example (see Figure|[T).

Example 1 Ler o £ T, x £ [z, € [0,2]] A [z2 € [0,3]]
(Figure a)) and let w(x, A) be a tree-structured weight
function defined as in Figure b ). To compute WMI(p A
X, w|x, A), six integrals have to be computed:

xixgon [r1€ [1,2]] Az € [1,3]] (fA1 =T)
2379 on [r1€ [1,2]] Afz2€ [0,1]] (if A1 =T)
z123 on [x1€ [0,1]] A fz2€ [2,3]] (if A1 =T)
z123 on [x1€ [0,1]] A [z2€ [0,2]] (if A1 = T).
2z1x0 0n 21 € [0,2]] AJz2€ [0,3]] (f A1 = L, A2 =T)
3zizg onz1€ [0,2]] Afz2€ [0,3]] (f A1 =L, Ay = 1)

2

) )

When WMI-PA is used (Algorithm[l)), applying LabelCon-



| Assignment Range

* it
P LT x 2 [m1€ 0,2 Al € 03] Plaizy i G B P P e e o
By ¢ (zy > 1) ABs > (35 > 2) { A1, A3, Bi, By, B3} [z1€[L,2]],[z2€ [2,3]] ziz2
= = { A1, Ay, By, By,~B3} [z1€[1,2]],[z2€ [1,2]] ziz,
ﬂ ﬂ { A1, Ay, B),—B3,~Bs} [z1€ [L2]],[z2€ [0,1]] =}z
w(x, A) w*(x, AUB) { A1, A,,-B:, By, By} [z1€ [0,1]], [z2€ [2,3] 712
{ A1, As,~Bi, Bz,~Bs} [z1€[0,1]],[z2€ [1,2]] z12:
° { A1, A3,-Bi, B, B3} [z1€[0,1]], [z2€ [0,1] 212!
1 T { Ai,-42, Bi, Ba, B3} [z1€[1,2]],[z2€ [2,3]] zfz2
: [same as with {A1, A;}] 8
{ A1,-Ay, =B, =By, B3} [z:1€ [0,1]], [z2€ [0,1]] 2123
° @ ("4, As, By, Ba, Ba) [z1€ (L2}, [v2€ 2,3]] 22172
{=41, A3, Bi, By,~B3} [z1€[1,2]],[z2€ [L,2] 22122
{~A1, Az, Bi,—By,-B3} [z1€[1,2]],[z2€ [0,1]] 2z122
{41, A3,-Bi, B, B} [z1€[0,1]],[z2€ [2,3] 22122
@ @ {~A1, Az,~Bi, Bp,-~By} [z1€[0,1]] [z2€ [1,2] 20122
{41, Ay,-Bi,~B;,~Bs} [z1€[0,1]],[z2€ [0,1] 2212
{~A1,-A2, Bi, By, Bs} [z1€[1,2]],[z2€ [2,3]] 3z122
/ / : X : :
: [same as with {-A;, A2} :
oz [ [mof] [md] (o] (o] |Bus] [oo) [mof] [@m] (o] [F2]| (e obeobs By e b ihiee 01 s

Figure 1: Example highlighting the efficiency issues of the WMI-PA algorithm. (a) definition of formula ¢ (trivially true)
and support x. (b) definition of the weight function w(x, A ). Round nodes indicate if-then-else conditions, with true and
false cases on the right and left outgoing edges respectively. Squared nodes indicate FI£RA weight functions. (¢) novel
version of the formula ¢* (x, A U B) after the application of the LabelConditions(...) step of WMI-PA. (d) novel version
of the weight function w*(x, A U B), where all LR.A conditions have been replaced with the fresh Boolean variables
introduced in ¢*(x, A U B). (e) List of assignments obtained by WMI-PA on A U B. Notice the amount of assignments

sharing the same FIERA weight function.

ditions(...) we obtain (Figure[l[c)):
" (x,AUB) Z oAYAB & (z1>1)A
B2<—>((E2 > 1)/\B3<—)(£B2 22)

and the weight function w* (x, A UB) shown in Figure[I|d).
Then, by applying TTA(PredAbs,«(A*)) (row 2) we ob-
tain 24 total assignments MA on AU B, as shown in
Figure[lfe).. Notice that WMI-PA uselessly splits into 2
parts the integrals on x3x5 and x123 and into 6 parts the

integral on 2x1x9 and on 3x1x9. Also, it repeats the very
same integrals for { Ay, As, ...} and { A1, —As, ... }. S

We highlight two facts. First, WMI-PA enumerates fo-
tal truth assignments on the Boolean atoms A U B in
TTA(3x.¢*) (@) (row 2 in Algorithm [I), assigning also
unnecessary values. Second, WMI-PA labels LR.A con-
ditions in w by means of fresh Boolean atoms B (row 1 in
Algorithm I). This forces the enumerator to assign all their
values in every assignment, even when not necessary.

The key issue about WMI-PA is that the enumeration of
TTA(3x.¢") in (€) and of TA(,a-,) in @) (rows 2 and 11
in Algorithm [T)) is not aware of the conditional structure
of the weight function w, in particular, it is not aware of
the fact that often partial assignments to the set of condi-
tions in w* (both Boolean and LR .A) are sufficient to iden-
tify the value of a FIUCX®4 function (e.g {41, B1, B>}
suffices to identify z%xo, or {=A7, Ao} suffices to iden-
tify 2z12x2), so that it is forced to enumerate all total as-
signments extending them (e.g. {A1, A2, By, B2, B3} and
{Al, Ag, Bl, BQ, _‘Bg}).

Thus, to cope with this issue, we need to modify WMI-PA
to make it aware of the conditional structure of w.

4 MAKING WMI-PA
WEIGHT-STRUCTURE AWARE

The key idea to prevent total enumeration works as follows.
We do not rename with B the conditions W in w and, rather
than enumerating total truth assignments for Ix.* as in
(@)-(7), we enumerate partial assignments for 3x.¢o** where
©** = o A x A sk(w) and sk(w) —which we call the condi-
tional skeleton of w—is a LR.A formula s.t.:

(a) its atoms are all and only the conditions in ¥,

(b) is LR.A-valid, so that p Ay is equivalent to @ A x Ask(w),
(¢) any partial truth value assignment g to the conditions ¥
which makes sk(w) true is such that wy,; is FILRAEI
Thus, we have that (IZ]) can be rewritten as:

WMI(p, wlx, A) =) 2V WM, (o, wi %) (9)
HETA(Ix.0**)
© A x A sk(w) (10)

ek def

Sp =

where |A \ p| is the number of Boolean atoms in A
that are not assigned by p. Condition (c) guarantees that

WMIln (@] Wi |x) in (@) can be directly computed, with-

out further partitioning. The 2/4\#| factor in (9 resembles
the fact that, if some Boolean atom A; € A is not assigned
in 4, then WMlnp (073, wy,,1[x) should be counted twice be-
cause (i represents two assignments pU{4;} and pU{—A4;}
which would produce two identical integrals.

Notice that logic-wise sk(w) is non-informative because
it is a valid formula. Nevertheless, the role of sk(w) is to
mimic the structure of w so that to “make the enumerator
aware of the presence of the conditions ¥”, forcing every

'E.g., the partial assignment 1 = {Ay, (z1 > 1), (z2 > 1)}
in Exampleis such that wy,; = x3 2o, which is FIFRA,



assignment p to assign truth values also to these conditions
which are necessary to make wy, FI*RA and hence make
WMInp (¢, wipy|x) directly computable, without further
partitioning.

An important issue is to avoid sk(w) blow up in size. E.g.,
one could use as sk(w) a formula encoding the conditional
structure of an XADDs or (F)XSDDs, but this may cause a
blow up in size, as discussed in Section 3.1}

In order to prevent such problems, we do not generate sk(w)
explicitly. Rather, we build it as a disjunction of partial
assignments over ¥ which we enumerate progressively. To
this extent, we define sk(w) = Jy.[y = w] where [y = w]
is a formula on A, x,y s.t.y = {y,y1,..-, Yk} is a set of
fresh variables. Thus, TA(Ix.(p A x A Jy.[y = w])) can
be computed as TA(Ixy.(¢ A x A [y = w])) because the
y’s do not occur in ¢ A ¥, with no need to generate sk(w)
explicitly. The enumeration of TA(Ixy.(p A x A [y = w]))
is performed by the very same SMT-based procedure used
in Morettin et al.|[2019]].

[y = w] is obtained by taking (y = w), s.t. y is fresh, and
recursively substituting bottom-up every conditional term
(If tp; Then t;; Else t;2) in it with a fresh variable y; € y,
adding the definition of (y; = (If ¥; Then ¢;1 Else t;2)) as

(7 Vys =) A (W VY = tig). (11)

This labeling&rewriting process, which is inspired to label-

ing CNF-ization [Tseitin, [1968]], guarantees that the size

of [y = w] is linear wrt. that of w. E.g., if () holds,
. N N

then [y = w] is (y = Hi:1 yi) A /\i:1((_‘1/)11 Vy, =

win (%)) A (Vi V yi = wiz(x))).

One problem with the above definition of [y = w] is that it
is not a LR.A-formula, because w may include multiplica-
tions or even transcendental functions out of the conditions
lIlE], which makes SMT reasoning over it dramatically hard
or even undecidable. We notice, however, that when comput-
ing TA(3xy.(p A x A [y = w])) the arithmetical functions
(including operators +, —, , /) occurring in w out of the
conditions W have no role, since the only fact that we need
to guarantee for the validity of sk(w) is that they are in-
deed functions, so that Jy.(y = f(...)) is always Valid.(In
substance, during the enumeration we are interested only
in the truth values of the conditions ¥ in p which make
Wy FIFRA regardless the actual values of wy,)). There-
fore we can safely substitute condition-less arithmetical
functions (including operators +, —, -, /) with some fresh
uninterpreted function symbols, obtaining a LRA U EUF -
formula [y = w]ey 7, which is relatively easy to solve by
standard SMT solvers [Barrett et al., 2009]. It is easy to see

The conditions in ¥ contain only linear terms by definition.

3This propagates down on the recursive structure of [y = w]
because, if y does not occur in ¢, Jy.(y = (If 1 Then ¢1 Else t2))
is equivalent to ((If ¢ Then Jy.(y = t1) Else Jy.(y = t2))), and
© is equivalent to Jy.(p[t|y] A (y = t)).

that a partial assignment y evaluating [y = w] to true is
LRA-satisfiable iff its corresponding assignment pigs 7 is
LRAUVEUF -satisﬁableE] Therefore, we can modify the enu-
meration procedure into TA(Ixy.(o A x A [y = w]eur)).

Finally, we enforce the fact that the two branches of an
if-then-else are alternative by adding to a mutual-
exclusion constraint —(y; = t;1) V —(y; = t;2), so that the
choice of the function is univocally associated to the list of
decisions on the 1);s. The procedure producing [y = w]eyr
is described in detail in Appendix, Algorithm 1.

Example 2 Consider the problem in Examplell] Figure
shows the relabeling process applied to the weight function
w. The resulting [y = w]eyr formula is:

[y = w]](X Uy,A) =

d('/

(mA1V =(z1 > 1)V =(22 > 1) V(g1 = fu1(x)))
A=AV (x> 1)V (z2>1) Vo (y1 = fi2(x)))
A=AV =(z1 2 1) V =y = f11(x) Vo = fi2(x)))
A=AV (212 1)V (22 > 2) Vo (y2 = fa1(x)))
A=AV (21 >1)V (22 >2) Vo (Y2 = f22(x)))
A=AV (21 2 1)V =(y2 = f21(%)) V(Y2 = fo2(x)))
A=AV =(zy > 1) Vo (ys=wu1))
A=AV (2 > 1) Vo (y3 = y2))
A=AV = (y3 = 1) V =(ys = y2))

A A1V -4, vV (ys = f3(x)))
A Ay \/ A2 Vo (ya = fa(x)))
A ALV =(ys = f3(x)) V =(ya = fa(x)))

/\(ﬂAl vV (ys = y3))
AC Ay V' (ys = ya))
N=(ys = y3) V (Y5 = ya))

A (y=1ys))

Figure 3] illustrates a possible enumeration process. The
algorithm enumerates partial assignments satisfying o N\
X Ay = wleur, restricted on the conditions ¥ 4
{41, As, (21 > 1), (2 > 1), (x2 > 2)}, which is equiva-
lent to enumerate TA(3xy.(¢ A x A [y = w]sur)). As-
suming the enumeration procedure picks nondeterministic
choices following the order of the above setE] and assign-
ing positive values first, then in the first branch the follow-
ing satisfying partial assignment is generated, in order:E]

xu {(y = y5)7é7 (y5 = yS)a _'(y5 = y4)7 (xl > ]-)7

(ys = 1), ~(ys = 92), (z2 = 1), (y1 = f11(x)),

=(y1 = fi12(x)) }-

(Notice that, following the chains of true equalities, we
have y = y5 = y3s = y1 = f11(x).) Then the SMT

“This boils down to the fact that y occurs only in the top
equation and as such it is free to assume arbitrary values, and that
all arithmetic functions are total in the domain so that, for every
possible values of x a value for y always exists iff there exists in
the EUF version.

SLike in Algorithm l we pick Boolean conditions first.

®Here nondeterministic choices are underlined. The atoms in
x are assigned deterministically.
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|
/

<]

A—(ys =¥3) V 2 (ys = )

Figure 2: Example of bottom-up procedure for computing the relabeling function [y = w] gy 7. (a) Replacement of FIERA
weight functions (the leaves of the tree, highlighted in red) with EUF function symbols (we dropped the dependency on x
for compactness). (b-g) Sequence of relabeling steps. At each step, a conditional term is replaced by a fresh LR.A variable
y;. The encoding of the variable in shown in the upper part, while the lower part shows the weight function with the branch
of the conditional term replaced with y; (highlighted in red). The last step consists in renaming the top variable as y, so that
y = w(x, A). The relabeling function [y = w]gy# is simply the conjunction of the encodings in the different steps.

solver extracts from it the subset { Ay, (x1 > 1), (22 > 1)}
restricted on the conditions in V. Then the blocking
clause = Ay V =(x1 > 1) V =(xze > 1) is added to the
formula, which prevents to enumerate the same subset
again. This forces the algorithm to backtrack and generate

XU{(y =us), A1, (s = ¥3), ~(y5s = ya), (x1 > 1),

(Y3 = y1), ~(ys = y2), ~(x2 > 1), (y1 = f12(x)),

—(y1 = fu(x))}

producing the assignment: {Ay, (x1 > 1), (zg > 1)}|Z|

Overall, the algorithm enumerates the following or-
dered collection of partial assignments restricted to
Atoms(p A x) U W:

"We refer the reader to [Lahiri et al.| [2006]] for more details on
the SMT-based enumeration algorithm.

XU{ A17 (5C1 21)7 (1‘221)}, //y:...:fu(x)
XU{ Alﬁ (xl 21)’ﬁ<x221>}” //y:...=f12(X)
xU{ A1, ~(z1 > 1), (22>2)}, //y=..= fa(x)
xU{ A1, ~(z1 > 1), ~(z2 > 2)}, //y=..= fa(x)
XU {—A41, A}, [/y=..=f3(x

XU {~41,~As)} /Jy == fa(x)

which correspond to the six integrals of Example[I} Notice
that according to [@) the first four integrals have to be multi-
plied by 2, because the partial assignment { A1} covers two
total assignments {A1, As} and {A1,—As}. Notice also
that the disjunction of the six partial assignments,

(A1 A (21 > D)A (22 > 1)) V...V (=41 A—As), matches the
definition of sk(w), which we have computed by progressive
enumeration rather than encoded a priori. o

Based on the previous ideas, we develop SA-WMI-PA, a
novel “weight structure aware” variant of WMI-PA. The
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Figure 3: Example of structure-aware enumeration performed by SA-WMI-PA on the problem in Example (a) Generation
of the first assignment. The assignment is on top, while the bottom part shows the [y = w]gy+ formula. Colors indicate
the progression of the generation, in terms of atoms added (top) and parts of the formula to be removed as a consequence
(bottom). For the sake of simplicity all atoms until the next atom in ¥ = {A, Ay, (x1 > 1), (z2 > 1), (2o > 2)} (if any)
are given the same color. (b) Generation of the second assignment. Note how the [y = w] g7 formula is enriched with the
blocking clause = A1 V —(x; > 1) V =(x2 > 1) preventing the first assignment to be generated again. (¢) Final result of the
enumeration (which contains six assignments in total). The partial assignments are obtained by restricting the generated
assignments on the conditions in ¥ (and combining them with the atoms of x, which here are assigned deterministically.).
For each assignment, the corresponding chain of equivalences of the ys with the identified leaf FI*RA function is displayed.

pseudocode of SA-WMI-PA is reported in Algorithm 2]

As with WMI-PA, we enumerate the assignments in
two main steps: in the first loop (rows we gen-
erate a set M2 of partial assignments p® over the
Boolean variables A, s.t. cp*;A is LRA-satisfiable and
does not contain Boolean variables anymore. In Exam-
ple[] MA™ £ ({41}, {~Ay, A}, {~A1,~A,}}. In the
second loop (rows , for each " in MA” we enumer-
ate the set M*RA of LR A-satisfiable partial assignments
satisfying @E‘:A*] (that is, on LR.A atoms in Atoms(p A

( MLRA

X)UW®), we compute the integral WM, s WA [X),

multiply it by the 21A\e | factor and add it to

the result. In Example if eg. puA = {A},

TA(PredAbs[SOF*A*]](Atoms(cpf‘/fm]))) computes the four
“w

partial assignments {x U {(z1 > 1),(z2 > 1)},...,x U
{=(z1 2 1), (22 2 2)}}.

In detail, in row 2] we extend ¢ A x with [y = w]eyr
to provide structure awareness. (We recall that, unlike
with WMI-PA, we do not label LR.A conditions with
fresh Boolean variables B.) Next, in row 3] we perform
TA(PredAbs[SDE«:A]] (A)) to obtain a set M# of partial as-

signments restricted on Boolean atoms A. Then, for each
assignment u® € M? we build the (simplified) residual
cpf‘:A]. Since pA is partial, @E‘:A] is not guaranteed to be free
of Boolean variables A, as shown in ExampleE} If this is
the case, we simply add p® to M2, otherwise we invoke
TTA(PredAbs[%rA]] (A)) to assign the remaining variables

and conjoin each assignment g2 ., to u®, ensuring that
the residual now contains only LR.A atoms (rows [} [10).
The second loop (rows [LIHI9) resembles the main loop in
WMI-PA, with the only relevant difference that, since "

is partial, the integral is multiplied by a 214\#* | factor.

Notice that in general the assignments ;" are partial even
if the steps in rows are executed; the set of residual
Boolean variables in wr:A] are a (possibly much smaller)
subset of A \ 1 because some of them do not occur any-
more in @F:A] after the simplification, as shown in the fol-
lowing example.

Example3 Let [0} “ (A1 \Y A2 V A3) AN (—\Al \Y Ag V
(x > 1) AN (A2 V (z > 2) A (R4 V (z <
3), x £ [z1 € [0,4]] and w(x,A) £ 1.0. Sup-
pose TA(PredAbs,..|(A)) finds the partial assignment



Algorithm 2 SA-WMI-PA(p, w, x, A)

1: M2 — B;vol <0

209" o AX A [y =wleur
30 M < TA(PredAbsi,-+)(A))
4: for u® € M4 do

5: Simplify(gpf‘:A])

6. if gpf‘:A] does not contain Boolean variables then
7: MA — MA™ U (A}

8: else

9: for 2 .. € WA(PredAbs[w[**A]](A)) do
10: MA* — MA* U {MA A :u’?esidual}

11: for A" € MA" do

12: k< |[A\ |

13: Simplify(gp?‘;‘m})

14:  if LiteraIConjunction(cpf‘:A*}) then

15: vol « vol + 2F 'WMInb(gOE:A*],U][MA*] |x)

16:  else

17: MERA TA(PredAbs[WEf:A*]](Atoms(gof‘/jm])))
18: for /“RA € MERA do

19: vol < vol + 2F - WMl (u=RA, Wiy, [%)

20: return vol

{(z >0),(x <4),Ay, (x> 1), (x > 2),(x < 3)}, whose
projected version is p® £ {Ay} (row . Then
pla) reduces to (A3 V (x < 3)), so that MA is
{{A2, A3}, {A2, A3} }, avoiding branching on A;. o

We stress the fact that in our actual implementation, like
with that of WMI-PA, the potentially-large sets M4~ and
MFERA are not generated explicitly. Rather, their elements
are generated, integrated and then dropped one-by-one, so
that to avoid space blowup.

We highlight two main differences wrt. WMI-PA. First,
unlike with WMI-PA, the generated assignments z* on A
are partial, each representing 21A\E? | total ones. Second,
the assignments on (non-Boolean) conditions W inside the
WERAs are also partial, whereas with WMI-PA the assign-
ments to the Bs are total. This may drastically reduce the
number of integrals to compute, as empirically demonstrated

in the next section.

S EXPERIMENTAL EVALUATION

The novel algorithm SA-WMI-PA is compared to the orig-
inal WMI-PA algorithm [Morettin et al., |2019]], and the
WMI solvers based on KC: XADD [Kolb et al.l 2018],
XSDD and FXSDD [Kolb et al.,[2020]. Each of these meth-
ods is called from the Python framework pywmi [Kolb
et al.l 2019]. For both WMI-PA and SA-WMI-PA, we
use MATHSAT for SMT enumeration and LATTE INTE-

--- timeout £

—— XADD 2 s

— XSDD

—— FXSDD 2

—— WMI-PA “— WMI-PA
SA-WMI-PA

SA-WMI-PA &7

10 s 0 25 30
Number of problems solved

Figure 4: Cactus plots reporting execution time for all meth-
ods on the synthetic experiments (left); number of integrals
(right) for WMI-PA and SA-WMI-PA.

GRALE for computing integrals. For the KC algorithms we
use PSiPSI [Gehr et al.,|2016] as symbolic computer algebra
backend. All experiments are performed on an Intel Xeon
Gold 6238R @ 2.20GHz 28 Core machine with 128GB
of ram and running Ubuntu Linux 20.04. The code of SA-
WMI-PA is freely available at https://github.com/
unitn-sml/wmi-pa.

For improved readability, in both the experiments we report
runtime using cactus plots, i.e. the single problem instances
are increasingly sorted by runtime for each algorithm sepa-
rately. We highlight how, by construction, problem instances
of the same tick of the x-axis are not guaranteed to be the
same for different algorithms. Steeper slopes of an algorithm
curve means less efficiency.

5.1 SYNTHETIC EXPERIMENTS

We first evaluate our algorithm on random formulas and
weights, following the experimental protocol of Morettin:
et al.| [2019]]. We define two recursive procedures to gener-
ate LR.A formulae and weight functions with respect to a
positive integer number D, named depth:

if D >0

otherwise

DL ro(D—1)
re(D) = {[—\]A]Bl’/R

[If r,(D) Then r,(D — 1) Else r,,(D — 1)]

or
Fw D) = X
w(D) ro(D — 1) @ ry (D — 1) ifD >0
Prandom (X) otherwise

where @ € {V7 /\7 - \/v - /\}’ ® e {+a } and Prandom(x)

is a random polynomial function. Using these procedure we
generate instances of synthetic problems:

X(xA) = r,(D)A N [2€ [loyua]]
w(x,A) = ru(D)
Pquery (X, A) = r,(D)

where [, u, are real numbers such that V. (l; < ug).


https://github.com/unitn-sml/wmi-pa
https://github.com/unitn-sml/wmi-pa

H=0.25 H=05

SAWMI-PA

H=0.75 H=1.0

XSDD
FXSDD.

SA-WMI-PA

Figure 5: Cactus plots representing average query execution
times and standard deviation in seconds on a set of DET
problems with H € {0.25,0.5,0.75, 1}.

In contrast with the benchmarks used in other recent
works [Kolb et al.| 2018}/2020], the procedure is not strongly
biased towards the generation of problems with structural
regularities, offering a more neutral perspective on how the
different techniques are expected to perform in the wild. The
generated synthetic benchmark contains problems where
the number of both Boolean and real variables is set to 3,
while the depth of weights functions fits in the range [4, 7).
Timeout was set to 3600 seconds, similarly to what has been
done in previous works.

In this settings, the approaches based on a SMT oracle
clearly outperform those based on KC (Fig. dleft). In addi-
tion, SA-WMI-PA greatly improves over WMI-PA, thanks
to a drastic reduction in the number of integrals computed
(Fig. @] right), with the advantage of our approach getting
more evident when the weight functions are deeper.

5.2 DENSITY ESTIMATION TREES

We explore the use of WMI solvers for marginal infer-
ence in real-world probabilistic models. In particular, we
considered Density Estimation Trees (DETs) [Ram and
Gray, [2011]], hybrid density estimators encoding piece-
wise constant distributions. Having only univariate condi-
tions in the internal nodes, DETSs natively support tractable
inference when single variables are considered. Answer-
ing queries like Pr(X < Y) requires instead marginaliz-
ing over an oblique constraint, which is reduced to WMI:
Pr(X < Y) = WM{&E;IS(;;Q’;DI?EEZ?ET) Being able to
address this type of queries is crucial to apply WMI-based
inference to e.g. probabilistic formal verification tasks, in-
volving constraints that the system should satisfy with high
probability.

We considered a selection of hybrid datasets from the UCI
repository [Dua and Graff] [2017]], reported in Table 1 in
the Appendix. Following the approach of Morettin et al.
[2020], discrete numerical features were relaxed into contin-
uous variables, while n-ary categorical features are one-hot
encoded with n binary variables.

After learning a DET on each dataset, we generated a bench-
mark of increasingly complex queries, 5 for each dataset, in-
volving a ratio H € [0, 1] of the continuous variables. More
specifically, the queries are linear inequalities involving a
number of variables k = maz (1, | H-|x|]). Figure[3|depicts
the runtime of the algorithms for H € {0.25,0.5,0.75, 1}.
Timeout was set to 1200 seconds. KC approaches have an
edge for the simplest cases (H < 0.5) in which substantial
factorization of the integrals is possible. Contrarily to many
other probabilistic models, which are akin to the case in Sec-
tion[3.1] DETs are well-suited for KC-based inference, due
to the absence of arithmetic operations in the internal nodes.
When the coupling between variables increases, however,
the advantage of decomposing the integrals is overweight by
the combinatorial reasoning capabilities of SA-WMI-PA.
We remark that SA-WMI-PA is agnostic of the underlying
integration procedure, and thus in principle it could also
incorporate a symbolic integration component.

6 CONCLUSION

We presented the first SMT-based algorithm for WMI that is
aware of the structure of the weight function. This is particu-
larly beneficial when the piecewise density defined on top of
SMT(LR.A) constraints is deep, as it is often the case with
densities learned from data. We evaluated our algorithmic
ideas on both synthetic and real-world problems, obtaining
state-of-the-art results in many settings of practical inter-
est. Providing unprecedented scalability in the evaluation
of complex probabilistic SMT problems, this contribution
directly impacts the use of WMI for the probabilistic verifi-
cation of systems. While the improvements described in this
work drastically reduce the number of integrations required
to compute a weighted model integral, the integration itself
remains an obstacle to scalability. Combining the fast com-
binatorial reasoning offered by SMT solvers with symbolic
integration is a promising research direction.
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